电子爱好者

LM4702是美国国家半导体公司推出的一款高保真音频功率放大驱动器件,是为对音质有高要求且需求大功率输出的消费者应用而设计的。放大器的输出功率大小可根据供给电压和输出设备数量的变化进行调整。采用LM4702设计的音频放大器每个声道能够在8负载上输出超过300W 的功率。 LM4702内含有过热保护电路,当温度超过150℃时它会停止工作。另外,LM4702有静音功能,启用后会减弱输入驱动信号,并使放大器输出变为静音状态。 一、功能特性 LM4702共有3个等级,在应用程序和性能水平方面

2009-2-9

LM4702是美国国家半导体公司于2006年9月宣布推出的一款高性能音频功率放大器驱动IC,用它驱动的功率放大器最大可获得300W的输出功率。 图1LM4702管脚功能 LM4702供电电压范围宽,内部还有静音功能和多种保护功能,既适用于高级家用音响系统,也适用于专业级音响设备。LM4702内含两组独立的音频放大及驱动部分,可以驱动多个大功率晶体三极管或多对达林顿晶体管,适用于每声道输出25W~300W功率的音响系统。 图2LM4702功放驱动器件典型应用电路 在国半公司的主页

2009-3-18

对数周期天线具有很宽的频带特性,以下两种树枝形对数周期天线工作在470~800兆赫频段,能适应大部分地区的DTMB数字电视接收要求。 树枝状对数周期天线(一) 树枝状对数周期天线(二) 上图两种对数周期天线分别采用平行馈电法和交叉馈电法,馈电点均在最短振子端。平行馈电法天线前后增加了引向器和反射器,天线增益系数约为8到11分贝;交叉馈电法天线增益系数约为3到4分贝。 树枝形对数周期天线(一)各部尺寸: 引向器长度240毫米,反射器长度620毫米,其它振子依次缩短,引向器到反射器距离1米。 树枝形

2016-2-14

2009-4-9

放大器部分: P1 = 22K 电位器 R1 = 1K 1/4W电阻 1/4W电阻R2 = 4K7 R3 = 100R 1/4W电阻 R4 = 4K7 1/4W电阻 R5 = 82K 1/4W电阻 R6 = 10R 1/2W电阻 R7 = R22 4W电阻(绕线) R8 = 1K 1/2W金属陶瓷微调(可选) C1 = 470nF的63V涤纶电容器 C2,C5 = 100uF的3V珠钽电容器 C3,C4 = 470uF的25V电解电容器 C6 = 100nF的电容63V涤纶 D1 = 1N414

2013-10-23

如图所示为2W音频功率放大电路。该电路采用了14脚封装的LM380作为放大器件,输入信号经音量控制电位器Rp(20k)和22F的耦合电容加到运放LM380的反相输入端(引脚6),其同相输入端(引脚2)接地,引脚1外接10F的滤波电容,以滤除高频纹波干扰,电路采用16V单电源供电,并在电源端(引脚14)到地之间外接470F的去耦电容,其输出端(引脚8)到地之间有两个并联支路:一支路由2.7电阻与0.1F电容串联组成,用于提高电路的稳定性,滤除部分高频,防止产生高频自激振荡;另一支路由470F的耦合

2008-11-12

TDA2003音频放大集成块外围电路可谓简单,下面是一个用它组装的10W迷你音频放大器电路,PCB板的设计也是非常简单,制作小巧的功放非常不错。 完成设备 COMPONETS布局 PCB COMPONETS R1:6欧姆 R2:220欧姆 R3:无 R4:10K欧姆电位器 C1:2200 UF / 25V C2:470 UF / 16V C3:470 NF / 63V C4:100 nF的 C5:没有 C6:没有 IC1:TDA 2003

2013-10-23

描述 低电阻(0.25 - 4欧姆)连续性测试仪用于检查焊点和连接。 笔记 这个简单的电路采用了741运算放大器在差分模式下为导通测试仪。 非反相和反相输入端之间的电压差是由运算放大器的完全开环增益进行放大。 忽略470K和10K控制的时刻,并期待在运算放大器的输入端。 如果该电阻器被完全匹配,则该电压差将是零,而输出为零。 然而使用470K和10K的控制允许的电位差小到可跨越运算放大器的输入端施加和破坏电路的平衡。 整个输入探头(被测电路)的小电阻会导致平衡被放大和运算放大器的输出swing

2014-5-8

带有低音提升电路的10W音频放大器 零件: P1 22K 电位器(同轴电位器/立体声) P2的100K 电位器(同轴电位器/立体声) 820R 1/4W电阻R1 R2,R4,R8 4K7 1/4W电阻 R3 500R 1/2W金属陶瓷微调 R5 82K 1/4W电阻 R6,R7 47K 1/4W电阻 R9 10R 1/2W电阻 R10 R22 4W电阻(绕线) C1,C8 470NF 63V涤纶电容器 C2,C5 100uF的25V电解电容器 C3,C4 470UF 25V电解电容器 C6 4

2013-11-12

1.5V至10V逆变器 这是个非常巧妙的电路,能将1.5V电压转换至10V,以取代那些昂贵的9V电池,并还为微控制器项目提供了一个5V电源。 但是,巧妙的部分是电压调节部分。输出端无电流时,整个电路工作电流小于8mA。 接入470R的负载并输出10v时,输出电流为20mA,电压降小于10mV。电位器将调整输出电压从5.3V到10V范围。

2013-11-8

下面的LED闪光电路在一个单一的1.5伏电池上工作。右上角的电路采用时下流行的LM3909 LED闪光IC,只需要一个定时电容和LED。 左上方的电路中,通过使用100uF的电容加倍电池电压,以获得3伏的LED驱动电压。74HC04六反相器的其中两部分用作方波振荡器,它建立LED的闪光频率,而第三部分是作为充电的电容器串联一个470欧姆的电阻,而缓冲器的输出是在1.5伏的缓冲区。当缓冲器的输出切换为接地(零伏)充电的电容器被放置在与LED串联,并供给足够的电压来点亮LED。LED电流大约是3毫

2014-3-15

这个简单的DC-DC转换器可以从一个12V电源输出最高至24V电压,最大功耗约为800mA。它可以被用来从一个12V的车辆用的电源运行收音机、小灯、继电器、喇叭或其他24V配件。它可以被用于将一个12V的电池从另一个12V电池充电。 LM358双运算放大器IC的上半部分作为一个方波振荡器,下半部分作为反馈回路,使负载变化时也能提供稳定的24V电压。做一些简单的调整这个电路有许多用途。 配件 R1,R2,R3,R4,R8,R7100K 1/4W电阻 R5470欧姆1/2W电阻 R610K线性电位

2014-3-11

此电源是专为业余无线电爱好者(HAM)使用而设计,已运作超过10年。 它的设计非常简单,全部由分立元件组装而成,最昂贵的元件是600VA环形变压器,它可以由其它类型变压器所取代,只要它具有1720V输出电压,并且功率能够满足需要。 稳压参考电压是由7.5V稳压二极管得到的(6V88V2),由R5、VR2和R6组成分压器监测输出电压变化并传输给Q2,经过达林顿放大器Q3,比较电压输出的驱动器Q4和4个NPN型功率晶体管2N3771控制输出电压。 滤波电容47毫法(mF),也就是47000微法(u

2013-12-15

此LED温度计为在家庭使用设计,读取温度约15至25摄氏度。它是基于一个高精度温度传感器IC,LM34DZ。该传感器无需校准,可以测量温度从零下45到零上150摄氏度之间,虽然这里所示的电路中不使用温度传感器的全范围值,它可以被修改为这样做通过简单地改变参考电压U2在精密的牺牲。 配件 C11uF的25V电解电容 C225V 10uF的电解电容 R12.2K 1/4W电阻 R2,R5,R71K微调电位器 R31K 1/4W电阻 R41.5K 1/4W电阻 R6470欧姆1/4W电阻 R8100

2014-3-6

该电路采用了一块TDA4700集成电路(PWM控制芯片)构成推挽式直流电源变换器,输入电压为20V~28V,输出电压5V,最大负载电流为10A,集成电路振荡频率为40KHz。该直流电源变换器的电路图如附图所示。 主要技术数据: 输入电压:20~28V(典型24V) 输出电压:5V 输出电流:10A 负载调整率:0.2% 效率:81% SIPMOS晶体管损耗: 导通时 PVD:1.0W 开关时 PVS:0.4W 总损耗 PVD+PVS:1.4W 变压器数据: n1=n2=14匝,双绕,绞合线120

2009-6-5

25W 场效应晶体管(MOSFET)音频放大器电路 电路图 零件: R1,R4 = 47K 1/4W电阻 R2 = 4K7 1/4W电阻 R3 = 1K5 1/4W电阻 R5 = 390R 1/4W电阻 R6 = 470R 1/4W电阻 R7 = 33K 1/4W电阻 R8 = 150K 1/4W电阻 R9 = 15K 1/4W电阻 R10 = 27R 1/4W电阻 R11 = 500R 1/2W金属陶瓷微调 R12,R13,R16 = 10R 1/4W电阻 R14,R15 = 220R 1/

2013-11-14

一个很好的稳压电源,是通过优秀的LM317T可调稳压器芯片简单地增加一个PNP功率晶体管来实现。这样一来该电路能够提供至少2A安培40V的电源输出。 R1__3R9 1或2W电阻 R2__22R 1/4W电阻 R3__6K8 1/4W电阻 R4__220R 1/4W电阻 R5__4K7 1/2W电阻 C1__3300F 50V电解电容(或4700F 50V) C2,C5__100nF 63V涤纶电容器 C3__10F63V电解电容 C4__220F50V电解电容 D1__整流桥100V 4A

2014-5-19

输出功率:40W 8欧姆,60W 4欧姆负载 放大器电路原理图: 放大器部分: 1W电阻R1 6K8 R2,R4 470R 1/4W电阻 R3 2K 1/2W金属陶瓷微调 R5,R6 4K7 1/2W电阻 R7 220R 1/2W电阻 1/2W电阻R8 2K2 R9 50K 1/2W金属陶瓷微调 R10 68K 1/4W电阻 R11,R12 R47 4W线绕电阻器 C1,C2,C4,C547F63V电解电容器 C3100F25V电解电容 C6 33PF 63V陶瓷电容器 C71000F50V电

2013-10-23

60W吉他放大器电路 低音,高音,谐波修饰和音色亮度控制 输出功率:40W 8欧姆,60W 4欧姆负载 放大器电路原理图: 放大器部分: 1W电阻R1 6K8 R2,R4 470R 1/4W电阻 R3 2K 1/2W金属陶瓷微调 R5,R6 4K7 1/2W电阻 R7 220R 1/2W电阻 1/2W电阻R8 2K2 R9 50K 1/2W金属陶瓷微调 R10 68K 1/4W电阻 R11,R12 R47 4W线绕电阻器 C1,C2,C4,C547F63V电解电容器 C3100F25V电解电容

2013-11-12

该电压变换器电路可以从6V电源提供12V 800mA的电源。例如,您可以在6V(英国?)汽车运行12V汽车设备。电路简单,大约75%的变换效率,非常有用的。通过改变少量的组件,你也可以修改它为不同的电压。 配件 R1,R42.2K 1/4W电阻 R2,R34.7K 1/4W电阻 R51K 1/4W电阻 R61.5K 1/4W电阻 R733K 1/4W电阻 R810K 1/4W电阻 C1,C20.1uF的瓷片电容 C3470uF的电解25V Capcitor D11N914二极管 D21N400

2014-3-11

6V-12V直流升压电路 该升压电路可从6V电源提供高达800mA的12V电源。电路简单,转换效率大约75%。只需改变少量几个元件,就可以修改它为不同的输出电压。 电路图 零件 R1,R4 2.2K 1/4W电阻 R2,R3 4.7K 1/4W电阻 R5 1K 1/4W电阻 R6 1.5K 1/4W电阻 R7 33K 1/4W电阻 R8 10K 1/4W电阻 C1,C2 0.1uF的瓷片电容 C3 470UF 25V电解Capcitor D1 1N914二极管 D21N4004二极管 D3 1

2013-11-15

CD4093IC双音警报器电路 双音报警声 单音老救护车声 电路图: 零件: R1,R3 470K 1/4W电阻 R2 680K 1/4W电阻 R4 82K 1/4W电阻 R5 330K 1/4W电阻 R6 10K 1/4W电阻 R7 33K 1/4W电阻 1/4W电阻R8 3M3 C1,C510F25V电解电容器 C2,C6 10nF的63V涤纶电容器 C3 100nF的63V涤纶电容器 C4 25V100F的电解电容 D1-D3 1N4148的75V150毫安二极管 IC1 CD4093四

2013-11-12

配件: U1 LM383 8瓦集成放大器 R1,R2 2.2欧姆的电阻 R3 220欧姆的电阻 C1 10UF电解电容 C2 470UF电解电容 C3 0.2uf的陶瓷电容器 C4 2000uf电解电容 SPKR1 4或8欧姆的扬声器(最多到8英寸直径) 所有电阻都是5%或10%的公差,1/4瓦 所有的电容都是10%的容差, 额定35伏或更高 LM383功率音频放大器IC建议安装合适的散热器。LM383采用的是5引脚TO-220封装。 LM383特点 高峰值电流能力(3.5A) 较大的输出电压摆

2014-5-11

下面是8瓦音响功放示意图。这个放大器可以用作简单的增压器,一个更复杂的放大器的心脏,或用作一个吉他放大器。 配件 C110UF电解电容 C2470UF电解电容 C30.1uF的电容 C42000uf电解电容 或2200uF的 R12.2欧姆电阻 误差凡是在10%内均可 R2220欧姆电阻 误差凡是在10%内均可 IC1LM383 8瓦放大器IC 或ECG1232,TDA2002 备注 IC1必须被安装在散热器上。 C3是用于过滤和防止振荡,不应该被删去。 该电路可建立在万用电路板或印刷电

2014-3-11

该电路能将音频线路电平放大至一瓦推动小喇叭播放。 根据LM386的多个版本,它们能输出不同大小的功率。LM386N-1可以提供325毫瓦,LM386N-2是500毫瓦,LM386N-3是700毫瓦,LM386N-4能达到一瓦输出功率。所有版本都可以在本电路中使用。 闭合S1可以提升低音(超重低音增强)。 R1 = 10 k R2 = 10 P1 = 10 k C1 = 100 nF C2 = 47 nF C3 = 470 F C4 = 10 F C5 = 33 nF IC1 = LM386 S

2014-5-2

此前置放大器采用集成电路LM741运放,可以提高麦克风信号线的电平。 麦克风信号通过C1输入,另一个端子为麦克风供电(如果需要),这里是电源电压的一半。 电位器P1调节增益,放大系数可以设定为10101倍。 R1, R2 = 2,2 k R3 = 220 k R4 = 220 R5 = 1 k R6 = 100 k R7 = 470 k P1 = 10 k C1 = 1 F/16 V C2 = 22 F/16 V C3, C5 = 100 F/16 V C4 = 10 F/16 V C6 =

2014-5-3

这是一个很好的麦克风前置放大器,可以用在调音台等设备中。该电路采用了双运放NE5532。 放大器必须进行调整。只需插上电源和控制P1,使得IC1的引脚3是电源电压的一半(6 V)。P2调节增益。 R1 = 8,2 k R2, R4, R5, R6 = 10 k R3 = 1 k P1 = 4,7 k P2 = 100 k C1, C2, C4, C6 = 10 F C3 = 470 nF C5 = 100 nF IC1 = NE 5532

2014-5-3

这个简单的放大器,可以用于很多事情,例如电脑音箱的功放等等。该电路使用了功放IC TDA 2003,这IC是TO-220外壳,有五个引线端子。 电源电压12至15 V,去耦电容C1尽可能靠近IC的引脚。电路的最大工作电流约1A。 R1 = 47 R2 = 220 R3 = 2,2 R4 = 1 C1,C6 = 100 nF C2 = 10 F/16 V C3 = 470 F/16 V C4 = 47 nF C5 = 1000 F/16 V IC1 = TDA 2003

2014-5-2

该放大器可工作在非常高的电源电压,使用一个IC和两个功率晶体管。 该电路由一个TDA2030A集成电路放大器和两个功率晶体管构成。工作电源12V至44V。 R1-R3, R7 = 100 k R6 = 8,2 k R4, R5, R8, R9 = 1,40 1% R10 = 1 C1 = 470 nF C2 = 10 F/63 V C3 = 4,7 F/63 V C4, C5, C7 = 220 nF C6 = 2200 F/50 V C8 = 1000 F/50 V D1, D2 = 1N4

2014-5-2

本教程是制作简单的FM发射器只使用一个晶体管。VC1是一种小型,螺丝可调,微调电容器,其额定值应在10-100pF。设置您的FM接收器在一个清晰的,空白的频率。然后,用非导电性的工具,调节电容器,将其旋转,直到接收器接收到来自发射器的麦克风的声音。用于确定频率下面的公式。 以下显示了用于进行FM发射器的组件。 晶体管2N3904 电容4.7pF,20pF,0.001UF,22nF。 对于VC1您可以使用微调电容器,看起来像这样: 电阻4.7K,470R 电容式驻极体麦克风 电感0.1uH,使用

2014-5-15

 ……

电子爱好者 DIANZIAIHAOZHE.COM