电子爱好者

低阻抗话筒放大器电路 描述 该电路是一个用于具有低阻抗(200欧姆)的麦克风的麦克风放大器。它将稳定工作在6-30V的电源电压。如果不建阻抗适配器与T1的一部分,你会得到一个高阻抗麦克风放大器。在这种情况下,你应该直接连接信号到C7。 示意图 零件 R1 = 15K R2 = 150K R3 = 2K2 R4 = 820 R6 = 10K R7 = 10K P1 = 1M C1 = 3K9 C2 = 100u的 C3 = 22U C4 = 4u7 C5 = 470u C6 = 10U C7

2013-11-12

巧妙的甲类放大器 该电路允许一个类似甲类放大器来驱动低阻抗的扬声器,并具有低静态电流。 与扬声器串联220R电阻限制了电流浪费,晶体管的集电极静态电流约20mA。然而,在处理信号时晶体管将几乎是直接驱动扬声器,唯一的限制是220R消耗了100u电容在每个周期的放电能力。 电路中220R是直流通路,驱动扬声器的交变信号直接通过100u电容。 在一些小的音频电路需要单管驱动低阻抗扬声器时,这是一个不错的方案。

2013-11-9

TDA2005是单电源工作的双声道音频功率放大集成电路,可应用于OTL双声道功放,也可接成BTL桥式功放电路使用。TDA2005内含过热、过载、输出短路等多种保护电路环节,性能稳定。 TDA2005外形为11脚单向排列,外形图如下 TDA2005主要参数 工作电压:8-18V 静态电流:60mA 可承受电源电压峰值:40V(50毫秒) 输出峰值电流:3.5A 芯片可承受结温:-40~150℃ 可驱动扬声器最低阻抗:1.6欧姆 双声道输出功率:10W2(扬声器阻抗=2;总谐波失真=10%) BT

2010-3-3

下面的两个电路示出了通过RC网络转移信号的相位,以便产生低频正弦波振荡,其中的总相移是360度。右侧电路的3904晶体管电路产生一个合理的正弦波的,它是通过所述JFET缓冲,以产生一个低阻抗输出。 该电路的增益是低失真的关键,你可能需要调整500欧姆的电阻,以达到以最小的失真稳定的波形。晶体管电路是不建议由于所需的关键调整实际应用。 运算放大器为基础的相移振荡器比单个晶体管的版本要稳定得多,因为增益可以被设置为低于维持振荡所需的更高的输出取自该滤波器滤除大部分谐波失真的RC网络。从RC网络的正

2014-3-13

微型扬声器改做有源麦克风1 音频电子制作中有时需要驻极体麦克风,这种麦克风具有较高的灵敏度。不过用一个普通的微型扬声器加上几个元件也可以做成一个非常灵敏的麦克风。 电路图如上,该电路将工作在3V到9V的电源,一个NPN晶体管和电阻电容组成共基极放大器,这样可以使用低阻抗扬声器,电路产生的增益超过100。 微型扬声器改做有源麦克风2 该电路将使一个普通的微型扬声器变成一个非常敏感的麦克风。该电路将工作在6V到12V电源。

2013-11-6

电压驻波比(VSWR)是射频技术中最常用的参数,用来衡量部件之间的匹配是否良好。当业余无线电爱好者进行联络时,当然首先会想到测量一下天线系统的驻波比是否接近1:1, 如果接近1:1,当然好。常常听到这样的问题:但如果不能达到1,会怎样呢?驻波比小到几,天线才算合格?为什么大小81这类老式的军用电台上没有驻波表? VSWR及标称阻抗 发射机与天线匹配的条件是两者阻抗的电阻分量相同、感抗部分互相抵消。如果发射机的阻抗不同,要求天线的阻抗也不同。在电子管时代,一方面电子管本输出阻抗高,另一方面低阻抗

2009-2-9

电源滤波器的组成 电源滤波器由 LC 网络组成,其作用原理是使得滤波器的阻抗与干扰源的阻抗不匹配,从而使干扰信号沿干扰源进来的方向反射回去,从而降低干扰源的影响。 图1 电源滤波器的原理电路 图 1 是一个电源滤波器的原理电路,图中 L1 和 L2 对共模干扰信号(非对称干扰电流)呈现高阻抗,而对差模信号(对称干扰电流)和电源电流呈现低阻抗,这样就能保证电源电流的衰减很小,而同时又抑制了电流噪声。通常 L1 、 L2 的值很小且相等,对称地绕在同一个螺旋管上,这样在正常工作电流范围内,

2009-7-10

运算放大器输出过流保护 图1所示为运算放大器输出过流保护电路,在因某种原因(如输出短路等)使集成运放输出过流时,保护电路即成恒流源,使集成运放不至因输山过流而损坏。 图1运算放大器输出过流保护电路 图中,场效应管3DJ7按在集成运放输出端,并采用近似恒流源的接法。当电路工作正常时,场效应管呈现低阻抗,基本不影响电路的输出电压范围。当电路输出端短路时,场效应管呈现高阻抗,使电路输出电流得到了限制。 二极管D1的作用是,在电能输出负电压时,与场效应管一起构成恒流源。D2与D1相同,则是

2009-3-21
电子爱好者 DIANZIAIHAOZHE.COM