电子爱好者

1.振荡器的定义: 在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅度的交变能量的电子电路称为振荡器。 2、正弦波振荡器 正弦波振荡器是指振荡波形接近理想正弦波的振荡器。主要有RC,LC和晶体振荡器三种电路。 3.振荡器的功用: 作为信号源,广泛应用于广播、电视、通信设备和各种测量仪器中,是电子技术领域中最基本的电子线路。 4、三点式LC振荡器 三点式LC振荡电路是实际工程中经常被采用的一种振荡电路,其产生的工作频率约在几MHz到几百MHz的范围,频率稳定度约为10-

2009-5-12

哈特利振荡器 哈特利振荡器,其特征在于在它的集电极接有一个LC电路。晶体管的基极保持稳定状态,从电感抽头取出部分信号回授给晶体管的发射极,以保持振荡。 变压器可以是任何带中心抽头的扬声器变压器。 通过改变470P电容调整频率。 考毕兹振荡器 考毕兹振荡器,其特征在于,振荡器部分的电容由两个电容串联而成。 电感可以是扬声器变压器。 相移振荡器 相移振荡器的特点是高通滤波器,创造一个180的相移。 输出是一个正弦波。 小心不要加载输出-这将阻止可靠的启动,可能会停止振荡电路。 3K3负载电阻降

2013-11-7

无稳态多谐振荡器是一种简单的振荡电路。它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振荡器电路。多谐振荡器可以由三极管构成,也可以用555或者通用门电路等来构成。用两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。 在本例中我们将用两只三极管制作一个多谐振荡器,并用它驱动两只不同颜色的发光二极管。在制作完成时,我们能看到两只发光二极管交替点亮,并且我们可以通过调整电路的参数来调整发光管点亮的时间。 三极管多谐振荡器的电路原理图:

2008-11-27

利用无线电波传递信息,具有传输距离远、传送信息量大、可以穿越大多数障碍物以及无须架设线路等特点,广泛应用于通信、广播、遥控和遥测等领域,也吸引了大批无线电爱好者投身其中。要发射无线电波,首先要产生无线电波。振荡电路就是按照人们的意愿产生无线电波的机器。 高频振荡器 振荡器是一种不需要外加输入信号,而能够自己产生输出信号的电路。产生无线电载波信号的高频振荡器属于正弦波振荡器。正弦波振荡器由放大电路和反馈电路两部分组成,反馈电路将放大电路输出电压的一部分正反馈到放大电路的输入端,周而复始即形成振荡,

2011-1-11

本文介绍一款基于LC高频振荡回路的金属探测仪制作电路,由于金属探测器利用振荡线圈的电磁感应来探测金属物体,因此它可以穿透非金属物进行探测,比如纸张、塑料、砖石、木材、土壤、甚至水层,探测到被遮盖的的金属物体。因此,金属探测仪在生活中也是具有实用性的,比如在房屋装修时,用它探测到墙内的电线或钢筋,以免造成施工危险和安全隐患。当然,用它进行一些科普娱乐活动也是很不错的。 工作原理 金属探测器的电路框图如下,由高频振荡器、振荡检测器、音频振荡器和功率放大器等组成。 高频振荡器 由三极管VT1

2008-8-25

这个交替闪烁灯是以简单的互补对称多谐振荡器为控制信号,用可控硅驱动两组220V白炽灯交替闪烁,可用于闪烁警示灯或简单的彩灯装饰。其电路如下图所示。 工作原理:交流220V电源经阻容降压、整流、滤波后,在VD3两端得到稳定的3V直流电压,为对称互补多谐振荡器供电。多谐振荡器中的VT1、VT2两只三极管轮流导通,其集电极电流控制双向可控硅VS1和VS2工作,两组白炽灯将交替闪烁发光。 元件选择:电容C1为0.47/400V(涤纶电容)、C2为220/6V,C3、C4为50/16V。电阻R1

2009-6-14

互补对称无稳态多谐振荡器 对于电子爱好者来说这个电路是比较熟悉的,它就是互补对称无稳态多谐振荡器。当左右元件取值一样时,波形占空比为50%,两个发光二极管点亮的时间相同。 如图取值,电路的振荡频率约为0.5秒,两个发光二极管会交替闪烁,你可以更改两个100u电容来改变频率。 随机单稳态 第一个电路是无稳态,如果稍作改动,就能成为一个单稳电路,本电路中被设计成随机的单稳态,通过一个按钮控制。 当按钮被按下时,电路会以很高的速率振荡并使两个LED指示灯亮起。当按钮被释放时,将保持点亮一个LED,

2013-11-6

本电路是利用555控制端(Vc)5脚的电压高低,改变其振荡频率和占空比的压控式多谐振荡器。 555和R1、R2、C1等组成无稳态多谐振荡器。其控制端通过RP1可改变其控制电压的高低,对芯片内比较器A1的反相端电压进行控制,调节比较器的比较基准电压值,进而改变了RS触发器的翻转电平及充放电回路的时间常数。 由图(b)所示的输出脉宽与控制电压Vc的关系曲线可见,Vc的变化对C1充电时形成的正脉冲宽度的影响圈套,而对C1放电时形成的负脉冲宽度影响很小。Vc在0.5~4.5V内变化时,正脉冲宽

2009-3-29

本电路中,555时基电路构成了一个压控式振荡器,控制端配合场效应管可实现占空比的大范围调节,电路如图 电路中,555时基、电阻R1、R2、电容C1~C3及三极管VT1构成一个压控式多谐振荡器,场效应管(JFET)VT在这里等效为压控电阻,通过改变其门(G)-源(S)电压VGs可改变VT-的漏(D)、源(S)间的阻抗。 接在场效应管漏极D和源极S的耦合电容C1、C2,用于防止其余电路的直流电压对JFET的影响。为不使耦合电容影响时基电路的充、放电时间,C1、C2的大小宜选为定时电容C3容

2009-3-29

在进行音频放大器的调试等需要低失真正弦信号的场合,有一台正弦波发生器是很必要的,这次的设计制作可达到这一目的。正弦波振荡电路有多种,但常用的是文氏电桥振荡器,图1是其原理简图。 在运放的同相输入端由RC滤波器构成正反馈,其谐振频率决定了振荡器的振荡频率f=1/2RC;在运放的反相输入端,由电阻构成负反馈,R1/R2的比值决定了振荡波形。在正反馈回路中R相等及C相等时,放大器的增益等于3,电路起振,即R1=2R2。如果R1<2R2,电路将停振;而R1>2R2,输出波形的顶部将被压缩为平顶。故对于

2008-11-27

使用一个运算放大器覆盖15Hz到150kHz的频率范围在四个经典的文氏桥振荡器切换步骤。 两个条件的正弦振荡器存在。再生或正反馈,以及统一的闭环增益。在维也纳反馈电路的损耗,是这样的,放大器的开环增益也必须超过3。 在这个电路中的增益是由一个场效应管型的运算放大器提供的。我已经使用一个LF351,这可能是难以得到的,但TL071CN或TL081CN可用于与具有较快的旋转速度比LF351。文氏网络是电阻和电容的并联组合,串联一个串行RC网络。回馈是从运算放大器的输出应用,到SERAIL RC输入

2014-5-8

石英晶体(晶振)是许多振荡和稳频电路中采用的元件之一,由它组成的振荡器频率稳定度高。晶振用万用表是不能完全判断其好坏的,可以做如下一个电路来检测晶振的好坏。 如图所示,BX为待测晶振,如果BX是好的,它与三极管VT1、电容器C1、C2等构成的振荡器就会起振,振荡信号从VT1发射极输出,经耦合电容C3,由检波二极管VD2检波、C4滤波后,变成直流电压给VT2基极提供偏流,使VT2导通,发光二极管H发光,指示被测晶振是好的。若发光二极管不亮,则表明晶振已损坏。 适当改变C1、C2的容值,可

2009-5-28

如图所示,本振荡器由555、R1、R3、C1和光敏三极管VT组成无稳态多谐式。振荡频率 光敏三极管VT的内阻随光照的变化而变化,当光照强时,呈低阻;光照弱时,呈高阻。因而,振荡频率也随光照的强弱而变化,频率范围可达1Hz~6.5kHz。本振荡器可用作盲人探路、天明报晓等场合。

2008-9-5

如图所示,该电路由一块双时基电路556组成两个同步的多谐振荡器,可输出同步的两个时钟脉冲信号,其间隔和振荡频率可通过调节时间常数来改变,灵活、方便。当选择C1=C2=C3时,其振荡频率 ,占空比D取决于R1和R2的值,可达5%~95%。 。

2008-9-5

该SG3909是一个专门设计的发光二极管闪烁单片振荡器。通过使用定时电容实现电压提升,使工作电压可在1.5V以下,输出脉冲可驱动1个或多个发光二极管闪光。SG3909采用8引脚塑料微型DIP封装,其引脚排列如图: SG3909管脚排列 SG3909自身功耗很低,在3V额定电压下,可提供高达6V的输出电压驱动任何型号的LED。SG3909外接的定时电容器为电解电容,它决定了SG3909输出脉冲的频率。 SG3909部分特性: 工作电源电压1.15V~6V 静态电流:0.55mA LED驱动电流峰

2009-12-12

文氏桥振荡器的三个例子如下所示。 第一个使用三个双极型晶体管。第二个使用的双极晶体管和JFET,第三个是采用一个运算放大器为最小的部位更受欢迎的类型。 我们的想法是产生于一些特定的频率使用2个电阻和同等价值的上限360度相移。一个电容和电阻是串联的,而另一个电容和电阻并联。通过网络的信号损失约为66%,因此放大器的增益需要大约3为1个环路增益。放大器的增益是至关重要的,因为太多的增益会产生限幅(扭曲)的波形和没有足够的增益不会维持振荡。这几乎是不可能实现的没有一些自动增益控制(AGC)来调节

2014-3-13

本电路是一个由555时基集成电路构成的受光控的音频振荡器,因此在不断变化的光照环境中,电路的输出音频频率会不断变化。光控传感器件就是一只光敏电阻。例如在阳光照射下用手掌不断地遮挡阳光照射到光敏电阻上,扬声器中就会发出音调随之不断变化的声音。甚至于,你可以用本电路模拟出鸟叫的声音。

2009-3-6

如图所示,一般的555多谐振荡器,充放电时间的调节会相互影响。本电路采用镜像电流源的形式,使电容C的充电回路和放电回路独立分开,且保证充、放电的线性。当刚通电时,输出呈高电平,VT5、VT2、VT1导通,C通过VT1恒流充电,当充至2/3 VDD阈值电平时,555复位,3脚转呈低电平,VT5截止。C通过VT3、IC内部的放电管放电,当放至1/3 VDD时,555置位。周而复始,形成振荡。

2008-9-5

这个施密特触发振荡器采用3个晶体管、6个电阻器和1个电容器,以产生一个方波。脉冲波形可以用一个额外的二极管和电阻(R6)来生成。Q1和Q2都与一个共同的发射极电阻(R1)连接,使得一个晶体管的导通将导致其它要关闭。Q3由Q2控制,并提供从集电极的方波输出。 在操作中,通过反馈电阻(RF)对输出电压的定时电容充电和放电。当电容电压上升到高于在Q2的基极电压时,Q1开始导通,从而引起Q2和Q3关闭,输出电压将下降到0。这反过来又产生在Q2的基极电压较低,并导致电容器开始朝着0放电。当电容器的电压低

2014-3-16

晶振测试仪 该电路用于测试从1MHz到30MHz的晶体振荡器的好坏。 当晶体振荡时,高频输出信号将通过两个二极管倍压整流,打开第二个晶体管,这将点亮LED。 制作一个插座,连接晶振比较方便。

2013-11-13

下面的一对振荡器电路可以分别产生一个32.768kHz方波,它们都使用32.768kHz的时钟晶体。该输出可以被馈送到15级二进制计数器,得到1秒的方波。 在左侧使用4069反相器的电路,建议增加一级晶体管电路,产生一个更好的波形。 单个晶体管电路产生更多的是斜坡波形,但输出摆幅在整个电源电压范围,很容易驱动CMOS二进制计数器。

2014-3-13

电子鼓 该电路由两个双T振荡器产生高低鼓音。触摸触摸板电路进入振荡,产生不同的效果,两个25K可调电阻调整振荡频率。 通过迅速在相邻的接地点和触摸点移动手指能产生一个击鼓音。

2013-11-7

如上电路,采用一片74HC14六反相施密特触发器,其中U1A构成方波振荡器,U1B/E/F缓冲放大驱动Q1,U1C/D二次反相驱动Q2,如此Q1和Q2交替导通,在T1次级输出交变电压。 74HC14是一款高速CMOS器件,主要参数如下: 典型电源电压:5.0V 正向输入阀值电压:VT+=1.6V 负向输入阀值电压:VT-=0.8V 驱动电流: +/-5.2mA 传输延迟:12ns(5V) 逻辑电平:CMOS 引脚:14 封装类型:DIP

2014-5-2

下列显示了通过改变C或R部件(红色的颜色在图中画出)和电源电压获得多项LED闪光电路的功能。

2014-5-20

如图所示,这是由三个相同的施密特触发器组成的闭环回路,首尾相接。每个触发器的延时为td=l.1(RP+R)C,延时td即C上的电压升到1/3 VDD所需要的时间。而555复位后,C上的电荷是通过R、W对前一级IC的输出端(3脚)进行灌电流放电的,因而与C的充电时间常数一样。因此,每个触发电路的输出端每改变一次要经过三个单稳触发电路传输,所需时间是3td。故每个IC的输出周期Td=6td。对应的频率

2008-9-5

741通用高增益运算放大器是一款比较老的的产品了,双列直插8脚或圆筒8脚封装。虽然性能不是很好,但满足一般要求,应用还是很广泛。工作电压22V,差分电压30V,输入电压18V,允许功耗500mW。可以代换的其他运放有uA741,uA709,LM301,LM308, LF356,OP07,op37,max427等。 如图所示为1kHz正弦波振荡电路。该电路是在双T电路基础上应用普通的741运算放大器产生1000Hz正弦波输出。调节100k电位器使电路起振,而电路的振荡频率由R1和R2确定,且一般情

2008-11-10

变容二极管是受电压控制的电子可变电容。换句话说,变容二极管表现出来的电容是反偏电势的函数。这种现象导致了变容二极管在一些需要考虑电容因素的场合的几种常见应用。 图1为一个典型的变容二极管调谐的lc振荡电路。电路耦合电感l2,的作用是当振荡电路被当作射频放大器使用时,将射频信号输人到振荡电路。主要的 lc振荡电路包括主电感l1,和电容c1与cr1的串联电容。除此之外,还要考虑广泛存在于电子线路的杂散电容cs。隔直电容和串联电阻的功能前面已经介绍过了。电容c2的作用是对调谐电压vin,进行滤波

2009-5-21

如图所示为频率可调、幅度不变的正弦波振荡电路。该电路由两级移相电路和一级分线性反相放大器串接而成。移相电路采用集成运算放大器A1、A2和RC的组合。由于反相器A3的相移是180o,所以,两级移相电路也应移相180o,以保证电路振荡所要求的总相移360o的条件。二极管D1、D2在电压较低时动态电阻很大,所以As组成的反相电路增益很高,保证电路的起振。当振荡幅度升高时,D1、D2的动态电阻越来越小,降低了电路的增益,从而使输出幅度得到稳定。由于二极管有较大的死区电压,所以小信号输出时波形有间断,故附

2008-11-10

类似救护车的警报声 该电路由两个多谐振荡器组成。第一个多谐振荡器工作在一个较低的频率,这提供了方波周期变化的电压输出。这个变化的电压改变第二个音频多谐振荡器的振荡频率,形成类似救护车的警报声。 第一个多谐振荡器左边LED未亮时,220R将6V电源电压加载到音频多谐振荡器,该LED亮起时,这个电压会稍微低于6V,正是这个电压变化控制着音频多谐振荡器的频率。 你可以调整第一个振荡器的元件参数来改变音调周期的长短,调整第二个振荡器的元件参数来改变声音的频率。

2013-11-7

该调频发射电路采用四射频阶段:晶体管BF494(T1)构成甚高频振荡器,晶体管BF200(T2)是前置放大,晶体管2N2219(T3)是驱动级,晶体管2N3866(T4)是功率放大级。电容式麦克风连接在振荡器的输入端,用语音调制振荡器频率。 1瓦调频发射机电路简单。当你靠近麦克风说话,频率调制信号在振荡器晶体管T1的集电极获得。 振荡器输出的FM信号由VHF前置放大器和预驱动级进行放大。您还可以使用晶体管2N5109代替2N2219。前置放大器是一个调谐A类RF放大器,驱动级是一个C类放大器。

2014-5-14

 ……

电子爱好者 DIANZIAIHAOZHE.COM