电子爱好者

铅酸电池成本低、技术成熟、使用性能稳定、原料来源丰富、铅回收率高成为各电动车生产商的首选,与铅酸电池相对应的充电器也繁荣于市场。 目前市场上电动车铅酸电池充电器的设计方案大致有两类:第一类是二阶段式,即先恒压充电,充电电流随铅酸电池电压上升而逐渐减少(即充电电流先大后小),当铅酸电池电能补充到一定程度后,铅酸电池的电压也会上升至充电器的设定值,充电器的红色指示二极管熄灭,绿色指示二极管随即点亮,充电器自动转入第二阶段的涓电流浮充充电;第二类是三阶段式,即先恒流充电,而后恒压充电,当铅酸电池的电压

2011-1-7

UC3842B电动车充电器电路图 KA3842电动车充电器电路图 TL494电动车充电器电路图 TL494电动车充电器电路图

2009-2-23

USB电源是单节锂离子电池充电的重要来源。该电路显示了如何使用美国国家半导体LM3622锂离子电池充电器控制器来构建一个USB供电的单节锂离子电池充电器。 电池充电器电路的设计作为一个高功率的USB功能。为了与USB规范(修订版1.1)兼容,高功率的设备一定不能从USB接口消耗超过500毫安电流。该LM3622采用0.25欧姆限流电阻R1设定为400mA(最大值)充电电流。 上面的电路增加了一个美国国家半导体LM3525集成电路,它是USB电源开关和过流保护芯片,可以通过USB控制信号控制电

2014-5-20

这款充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。在150~250V、40mA的交流市电输入时,可输出30050mA的直流电流。充电器电路图如下所示(点击可放大): 充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM型开关电源有一定的区别。PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而

2008-10-30

镍镉电池由于对环境有污染,早已停止生产,如今几乎看不到了。还是在九几年的时候,电子爱好者们针对镍镉电池以及镍氢电池的充电话题讨论十分激烈,期间不乏优秀的电路。 下面介绍的是两款早期针对镍镉电池及镍氢电池的充电电路,值得一提的是它们采用了555时基集成电路直接控制充电。即便现在已不再需要镍镉电池充电器,但对于电子爱好者们借鉴学习未尝不可。 4节5号镍镉电池充电 本文介绍的全自动充电器,可以一次对4节5号镍镉电池充电,电池充足电后,电路能自动停充。 电路原理 全自动镍镉电池充电器的电路如下图所示

2008-9-9

该太阳能手机充电器电路使用12V太阳能电池板,经过直流电压变换后输出稳定的电压给手机电池充电,并能在电池充电完成后自动停止充电。 充电器电路见图1,它是一个单端反激式开关电源变换器电路。当开关管 VT1导通时,高频变压器T1初级线圈NP的感应电压为1正2负,次级线圈Ns为5正6负,整流二极管VD1处于截止状态,这时高频变压器T1通过初级线圈Np储存能量;当开关管VT1截止时,次级线圈Ns为5负6正,高频变压器T1中存储的能量通过VD1整流和电容C3滤波后向负载输出。 图1太阳能手机充电器电路

2009-8-28

镍镉电池充电器(极性检测、恒流充电) 这种镍镉电池充电器可以给8个串联连接的镍镉电池充电。这个数字可以增加,但电源要为每节额外的电池增加1.65V电压。如果BD679被安装在一个很好的散热片上,可提高到25V的最大输入电压。如果充电器从电源断开,电路不会对电池放电。 通常镍镉电池必须充电14小时率。以电池容量10%的电流充电14小时。这适用于恒流充电。例如,一个600毫安时电池以60mA充电14小时。如果充电电流过大,会损坏电池。 由1K电位器控制充电电流在0mA至600mA的水平。充电电池以正

2013-11-11

该MAX1551和MAX1555充电芯片是为单节3.7V锂离子锂聚合物电池的USB充电器。他们无需外部的FET或二极管,并接受工作输入电压为7V。片上温度限制简化PC板布局,并允许最佳充电速率且无热限制由最坏情况下的电池和输入电压的罚款。 MAXl555采用双列5脚封装。CHG引脚为低电平有效,漏极开路充电状态指示输出。当电池充电电流高于50mA时,CHG引脚被拉至低电平。当充电器处于电压模式且充电电流跌至50mA以下时,CHC引脚变为高电平,充电过程并不停止。在预充电模式下,CHG引脚自动变

2014-5-20

下面是基于MCP73831集成电路的简单和便宜的紧凑型锂离子/聚合物电池充电器。它对单节锂电电池充电具有从15毫安到高达500mA的可调充电电流。MCP73831充电器仅仅需要很少的外部元件。需要56V恒压电源。电源也可以从USB端口获取。USB电源充电电流应不高,可为150mA。充电电流可通过外部电阻进行调整。外部LED提供锂电池完全充电时状态指示。最大充电电压是可选择的从4.2到4.5。通常,4.2V是一个标准的充电电压。MCP73831-2 - 4.2V,MCP73831-3 - 4.3V

2014-5-20

这是一个锂离子电池充电器,其电源采用从计算机的USB端口。它采用Microchip公司生产的MCP73861和MCP73863锂离子电池充电器芯片。MCP73861和MCP73863是先进的,完全集成的单节锂聚合物充电管理器件允许这些外围设备利用USB端口的全部能量。 锂离子电池有不同的类型 - 单电池,双电池,焦炭阳极,石墨阳极等,每种类型都有被充电到一个特定的电压。过低的电压导致未被充满电,其结果是对电池的全部容量没有被利用。 在电池充电时,即使过压0.1V,也可能导致电池损坏。这意味着它

2014-5-20

充电器的想法是使用完全充电的电池电压的稳压电源和一个电阻来限制电流。它不提供恒定电流,多出约30%以上的充电时间,或约4小时。恒流充电器可能会减少到3个小时,但需要更多的零件。 一个充电电流指示灯LED可以被添加,如图的左下方。LED熄灭时,充电电流为小于约35毫安,在18欧姆的电阻上的电压降大约为600mV或更少。测试运行260分钟后LED熄灭应表明电池约有85%容量,但不能肯定。 电压容量 充电时间容量 -------------------------------------------

2014-3-14

本文所述无极性充电器通过简单电路实现对蓄电池的极性自动判断。电路原理如附图所示。 蓄电池极性自动判断的工作原理 未接蓄电池时,晶闸管VT1、VT2无栅电流,电路处于截止状态。当A端接蓄电池正极、B端接负极时,由蓄电池为VT1提供栅流使VT1导通,交流电正半周经晶闸管VT1和二极管V2对蓄电池进行充电。同理,若B端接蓄电池正极、A端接负极时,则VT2因蓄电池提供栅流而导通,交流电负半周经VT2、V1给蓄电池充电。 无极性充电器电路原理

2009-8-16

第一种手机充电器电路 图 1为一款诺基亚手机通用充电器实绘电路。 AC220V电压经D3半波整流、C1滤波后得到约+300V电压,一路经开关变压器T初级绕组L1加到开关管Q2 c极,另一路经启动电阻R3加到Q2 b极,Q2进入微导通状态,L1中产生上正下负的感应电动势,则L2中产生上负下正的感应电动势。L2中的感应电动势经R8、C2正反馈至Q2 b极,Q2迅速进入饱和状态。在Q2饱和期间,由于L1中电流近似线性增加,则L2中产生稳定的感应电动势。此电动势经R8、R6、Q2的b-e结给C2 充电

2009-8-24

太阳能电池充电器,它使用一个并联稳压器以防止过度充电。电路使用一个12V的太阳能电池,但也可以适用于其它电压。 这是一个使用并联稳压器以防止过度充电的简单太阳能充电器电路。SC1是一个12伏40瓦的太阳能电池板。RS在电路中没有表示,是太阳能电池内阻。R2和D2,保持运算放大器的反相输入端在5.1伏特。在非反相输入端的电压由VR1和R1设置。在充电的条件下,运算放大器的输出为低电平,所有的电压到达电池B1。二极管D1防止没有光照时电池向太阳能电池反向供电。 当电池达到充满电压,运算放大器的输出

2014-5-4

12V涓流充电器 这个12v涓流充电器电路,使用一个TIP3055功率晶体管控制充电回路,当电池电压达到约14V时,或者充电电流超过2安培时,TIP3055会关闭以限制电流给电池充电。关闭该晶体管的信号来自其他两个晶体管 BC557和BC547。 接通电源时,BD139和TIP3055导通,BC557和BC547未工作。电流通过0.47R在它两端创建一个电压,并给22U电容充电,电流越大0.47R两端电压越高,当到达一定值时BC547慢慢导通,这将去掉一些BD139的导通电压及略微关闭TIP3

2013-11-8

描述 一个基本的镍镉电池充电器使用一个单一的中等功率晶体管。 笔记 这个简单的充电器采用单个晶体管作为恒流源。 横跨一对1N4148二极管的电压偏置BD140中功率晶体管的基极。 跨越二极管,晶体管和正向电压降的基极 - 发射极电压是相对稳定的。 充电电流是约15毫安或45毫安与开关闭合。 这最适合1.5V和9V充电电池。 变压器应该有12V AC的二次额定值0.5安培,主要应该是220/240volts欧洲或120volts AC北美。 警告 请小心使用这个电路。 使用电压表来观察正确的极性

2014-5-3

这种充电器用于对12V铅酸蓄电池充电。它是完全自动的,最大充电电流约4A,直到电池电压达到预先设定的点时,将切换到一个非常低的电流浮充。如果电池电压再次下降时,充电器将开始充电,直到电压再次达到切断点。以这种方式,可以无限期地保持满充电,而不会造成损坏。当电池充满电LED指示。 配件 R1,R3330欧姆1/4W电阻 R2100欧姆1/4W电位器 R4,R5,R7,R882欧姆电阻2W R6100欧姆1/4W电阻 R91K 1/4W电阻 C1220UF 25V电解电容 D1P600二极管 任何

2014-3-11

该恒流充电器使用了一只恒流二极管,电路见下图: 工作原理: 充电开始时,电池电压较低,三极管BG1基极电位较高,致使恒流二极管2DH15C导通,BG1集电极产生一个恒定的电流I C 1流过发光二极管LED,LED发光,其正向压降约1.5V,为三极管BG2提供一个稳定的基极电位,于是BG2产生一个恒定的集电极电流I C 2,此时I C 1、I C 2共同组成充电电流对电池充电。当电池电压升高到预定值时,三极管BG1、恒流二极管2DH15C截止,电路停止对电池充电。 电位器W用于调节充电器的充电截

2009-5-15

构建该电路是为了给安装在便携式晶体管收音机中的锂电池(3.6伏特,1安培小时容量)充电。 充电器工作由通过串联电阻提供一个短的电流脉冲,然后监测电池电压,以确定是否需要另一个脉冲。电流可以通过改变串联电阻器或调节输入电压进行调整。当电池电量低时,电流脉冲间隔靠近在一起,使得有些恒定电流存在。电池达到完全充电时,脉冲间隔更远,LED以较慢的速率闪烁指示满充电状态。 一个TL431,给比较器引脚6提供2.5伏参考电压,在引脚7上的电压低于2.5伏时,比较器输出将切换到低电平,触发555定时器工作。5

2014-3-14

这是一个基于MAX1811集成电路的USB充电器,可以同时处理锂离子和锂聚合物电池3.7V。它需要很少的外部元件,并提供能力4.1V和4.2V电池调节来选择不同类型的锂聚合物电池。充电电流为100mA和500mA进行选择,LED提供充电的状态指示。 锂电池充电控制器MAX1811的引脚参数及电路 MAX1811是美信公司生产的USB接口单节锂电池充电控制器,它可以直接由USB端口供电,或由其他外部电源供电,电源电压可达+6.5V。 1 特性 MAX1811无须微处理器控制,最大充电电压可由引脚

2014-5-20

这是一个简单的太阳能电池供电的镍镉电池充电器。太阳能电池在超过80%的效率提供了可用的电压。采用一块MAX639降压型DC-DC转换器芯片。 MAX639内有作为开关晶体管的P沟道功率MOS FET,此外,还有误差放大器、振荡器和PFM电路,构成基本电路时要外接电感线圈,二极管和输入输出电容等。MAX639系列固定/可调输出多功能开关稳压集成电路是一种高效、多功能开关稳压电路,输出电压+5v,输入电压5.5~11.5V,输出电流100mA。其效率高,并有逻辑电平控制的电子开关控制端及电池低电压检

2014-5-22

本文介绍的充电器直接使用220V交流市电,通过触发电路的控制,实现其输出电压从0V起调,适合于对12V-220V的蓄电池(组)充电。 工作原理 电路工作原理见图1。由电源电路、触发电路和主控电路三部分组成。220V市电经电源开关S-S'、电源变压器T1降压后,由二极管VD1-VD4组成的全波整流电路整流,变为脉动直流电源。一路经电阻R1限流和稳压二极管DW稳压,输送约18V的梯形波同步稳压电源,作为时基集成电路NE555及其外围元件构成的无稳态振荡器RC延时环节的电源;另一路经过三

2008-10-21

充电器除可为各种镍镉电池充电外,也可为干电池充电。其充电电流可调。充电终止电压由RP1预先确定。 工作原理 电路原理见图1。开始充电时,电池组两端电压较低,不足以使晶体管VT导通。由RC组成的移相电路给可控硅提供触发电流。移相角度由RP2决定。负半周时可控硅截止。因此可控硅以可控半波整流方式经电池组充电。调整RP2即可调整充电电流,最大充电电流由R1既定。指示灯串在电路中以指示充电情况和充电电流的大小。R3用以调节指示灯的亮度。当电池组电压慢慢升高,快到预定值时,三极管开始导通,可控

2008-10-21

后备电源是因停电或其他原因而准备的临时性供电设备。常见的后备电源有小型发电机和各种蓄电池。其中,经济耐用的铅酸蓄电瓶不失为后备电源的首选。笔者综合考虑,为铅酸电瓶后备电源设计了一款自动充电器,电路如附图所示(市电降压整流部分略)。 电路的核心部分是由NE555组成的滞回比较器,R8、R9、RP1和RP2构成取样电路,LED1-LED3为充电状态指示。电瓶的充电用继电器连接,使通断更为可靠。S1、S2为轻触开关,可以用来手动控制充电进程,使电路变得更加灵活方便。 下面重点介绍电路的工作原理、调试方

2008-11-27

充电器采用简单的定时器,充电时四只容量为500mA的镍镉电池串联在一起进行充电。电池以50mA的恒流充电15小时后,电路自动断电,充电停止。 电路采用NE555作为时钟电路,它产生6秒周期的方波用来触发IC2,IC2接成8192:1的分频器。充电时,三极管T1导通,使继电器RL1吸合,LED发光表示充电正在进行。在555送入IC2到8192个时钟脉冲后,IC2的3脚变为高电位,T1截止,RL1释放,电路停止充电。开始充电时按下开关S1,使继电器吸合自保,充电直到预定时间为止。

2009-5-19

该项目是太阳能电池手机充电器。该电路将太阳能电池输出的电量保存在6伏镍镉电池(B1)中以便随时给手机充电。添加一个低压差微功耗稳压器来产生5伏的恒定电压可以驱动大多数USB供电的手机和其他设备。 5安培保险丝是强制性的,不应该省略它!镍镉电池组可以提供很高的输出电流,意外短路会发生危险! 这个电路设计使用小型3伏太阳能电池,所以需要对其升压,增加了一个合适的低压差稳压器用来对6伏镍镉电池组充电。该电路采用电感储能式升压,来自太阳能电池的电压不低于1.5伏就可工作。简单的电路可能不是最有效的,但

2013-12-12

本文介绍一种太阳能手机电池充电器,它使用太阳能电池板供电,经电路进行直流电压变换后给手机电池充电,并能在电池电量充足后自动停止充电。 工作原理 太阳能电池在使用时由于太阳光的变化较大,其内阻又比较高,因此输出电压不稳定,输出电流也小,这就需要用一个直流变换电路变换电压后供手机电池充电,直流变换电路见图1,它是单管直流变换电路,采用单端反激式变换器电路的形式。当开关管VT1导通时,高频变压器T1初级线圈NP的感应电压为1正2负,次级线圈Ns为5正6负,整流二极管VD1处于截止状态,这时高

2008-5-24

该并联型充电器可同时对多节电池进行恒流充电,电池充足后自动切换为涓流充电状态。电路如下图:(点击可放大) 三极管T2、T4、T6、T8及相关元件构成恒流充电电路,充电电流设置为50mA、120mA两档,通过开关K切换,K闭合时充电电流50mA,断开时充电电流120mA。晶体三极管T1、T3、T5、T7及其相关元件构成充电状态检测电路。电位器W用于设置充电电压上限,电池充满后达到上限电压,进入涓流维持状态。通过电阻R4R7R10R13设置涓流为9mA左右。

2009-5-19

这个简单的充电器采用单个晶体管作为恒流源。一对1N4148二极管产生约1.2V电压降,使得BD140中功率晶体管的基极和发射极工作电压稳定。如此,电阻大小决定了基极电流以及集电极电流。按照图示的电阻取值,充电电流是约15毫安或45毫安(开关闭合)。 通过加大元器件功率可获得更高的恒定电流。为电池充电时注意调整到适合的电流,并在充满时及时取出电池避免过充电。

2014-5-20

这个电路是用于控制恒流充电器的温度。它适用于镍镉、镍氢电池,以及其他的可充电电池。温度过高是缩短电池寿命的主要根源之一,会破坏电池的内部密封和泄漏电解质。当电池变干,他们储存电量的能力减弱。这个电路可以快速充电的可再充电电池组没有任何负面影响。该电路采用22VDC供电。 原理 变压器,整流桥,和1000uF的电容提供直流电源的约22伏特来执行电路的其余部分。7812调节器下降这12V运行311比较器和4011与非门。 启动开关被按下时,启动充电循环。这导致两个4011与非门,其连接为一个RS触

2014-3-4

 ……

电子爱好者 DIANZIAIHAOZHE.COM