电子爱好者

下面介绍的实用定时开关,定时时间在1小时内连续可调;定时时间一到后,即切断了电源,而且定时开关本身不消耗电能。 电路原理: 定时开关的电路图如下所示: 此定时开关主要由与非门I和晶体管开关电路组成。与非门电路的逻辑功能是当输入端全部为高电平1时,输出才为低电平0;只要有一个输入端为低电平0时,输出就为高电平1。这个逻辑关系可以简化为:见0出1,全1为0。掌握了这个逻辑关系就可以分析有关与非门的电路了,图中与非门有两个输入端,即5、6两脚,画有小圆圈的4脚为输出端,方框中表示与非门。

2008-10-29

下面介绍的实用定时开关,定时时间在1小时内连续可调;定时时间一到后,即切断了电源,且定时开关本身不再消耗电能。 电路原理 : 定时开关的电路如下图所示: 定时开关主要由与非门I和晶体管开关电路组成。与非门电路的逻辑功能是当输入端全部为高电平1时,输出才为低电平0;只要有一个输入端为低电平0时,输出就为高电平1。这个逻辑关系可以简化为:见0出1,全1为0。掌握了这个逻辑关系就可以分析有关与非门的电路了,图中与非门有两个输入端,即5、6两脚,画有小圆圈的4脚为输出端,方框中表示与非

2009-8-26

用NE555时基集成电路搭配少许外围元件可以方便地做出一个调压与定时两用控制器。其指标为:调压范围30215VAC,定时560分钟,功率500W。可对各种家用电器进行调压(调光、调温、调速)或定时关闭。(提示:调压功能绝不能用于采用开关电源的电器!如电脑、彩电、手机充电器等。) 工作原理 该两用控制插座的电路原理图见图1。调压、定时选择开关S2置于1时,NE555和S、C3、RP2及VS等组成定时控制电路。使用时,按一下AN,C3通过R2、AN迅速放电,这时,NE555的②、⑥端为高电平,③端

2008-11-20

时间延时继电器是电源接通一段时间后再给继电器通电。这个延时继电器是由一个555定时器IC构建的简单的可调定时器电路,用于控制实际继电器。时间可在0到约20秒之间。该电路可控制的负载功率仅受限于你决定使用什么样的继电器。 555定时器IC构建的延时继电器 配件 R1 1兆电位器 R210 K 1/4瓦的电阻 C110UF 25V电解电容 C20.01UF瓷片电容 D1,D21N914二极管 U1555定时器IC 继电器9V继电器 S11A 120V单刀单掷开关 备注 R1调整时间。 您可以使

2014-3-10

用555时基电路制成的相片曝光定时器是555单稳态电路的典型应用实例。电路图如下: 如图所示,电源接通后,定时器进入稳态。此时定时电容CT的电压为:VCT=VCC=6V。对555这个等效触发器来讲,两个输入都是高电平,即VS=0。继电器KA不吸合,常开点是打开的,曝光照明灯HL不亮。 按一下按钮开关SB之后,定时电容CT立即放到电压为零。于是此时555电路等效触发的输入成为:R=0、S=0,它的输出就成高电平:V0=1。继电器KA吸合,常开接点闭合,曝光照明灯点亮。按钮开关按一下后立即

2009-4-22

在家经常做饭,有许多东西需要有个时间限制,如腌个肉吧,十几分钟;煲个简单的汤吧,文火1小时等,这些都不需要精确的定时,只要大约知道时间就可,但一定需要提醒,市场上五花八门的厨房定时器应运而生,小巧精致而且实用。 市售的各类厨房定时器 作为电子爱好者,笔者热衷制作,用单片机做一个简单有趣的厨房定时器,既解决了实际的问题,又满足了爱好实践的愿望,于是就有了本文的这个制作。这个电路十分简单,可以使用洞洞板直接焊接电路,制作用不了半天,无需调节,非常适合初学者练手制作。 该制作以5分钟为一个计时

2010-12-22

家里一台双桶洗衣机洗几分钟就停下,起先拍打定时器两下又能洗一会,扭动一下旋扭又能洗一下;终于有一天它完全不动了。 我想:这种定时器属于时钟式定时器,停走的原因不外有三个: 1缺油。2。齿轮系统有杂物。3发条折断。 根据本例在扭动旋扭时还有上发条的手感,所以判断不是发条折断,原因就只能是1。2两点。 先是在主轴上加注缝纫机油,然后轻轻敲击主轴,但这样处理后没有什么效果,难道说这个定时器就要报废了吗?要换一个,市面上也不好买;要拆开清洗,没有特制工具是不可能重新组装起来的。 如何是好?想了很久,终于

2010-12-27

此切换电路通过使用一对555定时器接成的逆变器运行。引脚2和6是阈值和触发输入到第一定时器和引脚5为输出。在引脚5的输出将总是在输入引脚2和6的逆运算。同样,在第二定时器的引脚9的输出将总是在输入管脚8和12的倒数。一个100K电阻一个逆变器的输出连接到其它的输入,使之一的状态会被对方的相反。 在操作中,1uF的电容将充电到任何电压在引脚5上的输出。当按钮被按下时,电容器电压将被施加到另一个计时器将反向两个定时器的状态和切换继电器,或开或关的输入。 更紧密地跟随它,假设输出引脚5为12伏和在销

2014-3-17

光施密特触发器电路共五个元件组成,以555定时器为核心元件。光敏电阻RG的阻值会随着光照强度的变化而变化,利用555内部的两个比较器的复位和置位特性,便可组成施密特触发器。 当光线强时,光敏电阻RG呈低阻,555定时器2脚呈低电平( 1 / 3 V DD 触发电平),555置位,继电器K不动作;当光线弱时,光敏电阻RG呈高阻,555定时器6脚电平高于 2 / 3 V DD 阈值电平,555复位,继电器K吸合。 继电器K用于控制后级电路。

2009-3-28

音乐催眠器由定时电路(分立元件1小时定时)和音乐发声电路(CIC2851音乐芯片)两部分组成,具体电路如图所示。 三极管VTl~VT3组成定时电路;ICl音乐集成电路CIC2851和三极管VT4等元件组成音乐发声电路。按下按钮开关SB,Cl被充电,VTl、VT2导通。松开SB后,由于Cl贮存电荷通过RPl和Rl向VTl基极放电,VTl、VT2仍能保持导通状态。VT3基极通过二极管VD从VT2的c、e极问获得正向偏流而导通,ICl得电工作,其③脚输出音乐信号经VT4放大后推动喇叭BL发声。

2009-3-7

下面的电路示出了相对于触发输入时产生被延迟的一个正脉冲,由两个555定时器构建。 该电路类似于前文的一个,但采用两个阶段,使两脉冲宽度和延迟可被控制。 当按钮被压下时,第一级的555定时器输出将转为高电平,并保持接近电源电压,直到延迟时间已过,而在这种情况下,大约是1秒。 在第二阶段555定时器将输出低电平,因为它的引脚2需要一个低电压才能触发,所以在第二级的输出保持低电平,继电器保持断电。 在延迟时间结束时,第一阶段返回到低电平,而下降的电压的输出使所述第二阶段开始它的输出周期也是1秒左右,如

2014-3-18

在某些场合可能需要能够周期性循环定时控制的定时器,本文所述电路即可完成这一要求,每1~2个小时定时器可以接通被控电路工作1~3分钟,接通时间和关闭时间可以独立调节。下面就以控制一个交流电机示例,电路图如下: 555时基芯片和VT2、RP1、C3、RP2、R3等元件组成一个无稳态多谐振荡器。单结晶体管VT2和电位器RP1构成对电容C1充电的恒流源,相比于一般的阻容回路,具有充电速度恒定线性好和长延时等优点。当电源接通时,555电路置位,继电器K吸合,常闭触点K1-a、K1-b断开,K2不动作

2009-4-6

555定时器在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。 当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。 当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。

2009-4-22

如图是由556双时基电路组成的长时间定时器电路。定时时间可长达4小时。 在556双时基电路中间接入N8281分频器网络,不必用大体积电容器,即可得到相当长的时间延时。第一个l/2(556)以振荡器的方式工作,其周期为l/f。振荡器的输出加到N分频器网络上,产生具有N/f周期的信号输出,用来触发另一半1/2(556)。把分频器连接到第二个1/2(556)的输入端⑧脚,决定了由分频器产生的延时总量。延时时间有30min、1h、2h、4h等4挡。如果另外再串联N8281分频器,则可使得总延迟量增加到

2008-9-4

这是一个定时渐亮照明灯,用一个微动开关启动,起先灯以微亮发光,过几秒钟后才全亮照明,再过约2min灯自动熄灭。它适用于夜间用灯,渐亮可使人的眼睛逐步适应,避免突然的强光刺激,又可节能和延长灯的寿命。 电路如图所示,使用两块555(或一块556),一块555作照明定时单稳工作,另一块用作延时后全亮单稳控制。AN是启动开关,D是照明灯。工作电源采用电容器降压方式,用12V左右稳压二极管限压。 在无需照明的常态下,图左555第2脚为高电平,第6和7脚充电上升为高电平后立刻放电为低电平,第3脚

2008-10-22

该充电器采用简单的定时器,充电时四只容量为500mA的镍镉电池串联在一起进行充电。电池以50mA的恒流充电15小时后,电路自动断电,充电停止。 电路采用NE555作为时钟电路,它产生6秒周期的方波用来触发IC2,IC2接成8192:1的分频器。充电时,三极管T1导通,使继电器RL1吸合,LED发光表示充电正在进行。在555送入IC2到8192个时钟脉冲后,IC2的3脚变为高电位,T1截止,RL1释放,电路停止充电。开始充电时按下开关S1,使继电器吸合自保,充电直到预定时间为止。

2009-5-19

该太阳能光控定时节能照明灯电路是由太阳能电池、蓄电池、光控电路、定时电路和节能灯驱动电路几部分组成。具体的电路原理图如下所示:(点击可放大) 电路原理简述: 白天有太阳时,太阳能电池板输出的电压通过二极管VD1给蓄电池充电,储备电能以供电路夜间工作。RL光敏电阻在白天的阻值呈低阻状态,NE555的2、6脚输入电压大于(2/3)Vcc,其3脚输出低电平,使CD4069和三极管VT1无电压不工作,继电器J不动作,节能灯驱动电路无电压。 夜间,光敏电阻RL呈高阻值,使NE555输入瑞电压

2009-5-15

本文介绍的NE555单稳态定时器具有微静耗和双路触发的特点。其电路结构简单,运行亦可靠。 定时器的原理电路见上图。平时,NE555的2脚处于高电平,第4第8脚因T1截止为低电平0V,所以此间的NE555静态电流为0。由于3脚无电压,所以T2、T3亦截止,单稳态可由两路触发,凭使用者自选。其中一路可由输入端IN引入负脉冲触发NE555,使之进入暂态;另一路则由按键开关触发。 无论采用哪种触发形式,都是使NE555的2脚产生瞬间低电平。此时,NE555被触发进入暂态。触发瞬间,除给2脚提供

2008-10-10

用分离元件制作应用电路是每位学习电子的朋友都要接触到的,其实,无论电子技术如何精湛,当再次制作分离元件电路时都会是一种乐趣所在,因为你可以彻底的去分析到每个元件的工作原理和过程,让你能看透每一个元器件,这也正是学习电子的朋友所需要的精神。 这里介绍两个用全分离元件制作的简单定时器电路,简单而实用,供电子爱好者参考。 1、0~120秒可调定时器 首先介绍的延时电路,采用晶体管、阻容元件和一个继电器做成,其延时时间在0~120分钟内连续可调,电路结构简单、工作可靠,可作为家用电器的延时装

2009-3-5

该调光定时两用台灯电路可以进行无级调光,同时还具有定时关灯功能,电路由分立元件构成的可控硅调光电路和晶体管延时电路两部分组成。2N6565为耐压400V额定电流0.8A触发电流200A的可控硅,TO-92封装,其它类似型号均可代用。

2009-5-10

这是一个使用单独的LED来指示小时和分钟一个可编程的时钟定时器电路。12个LED可布置成一个圆圈来表示的12个小时的时钟面和一个额外的12个LED可以被布置在外侧圆,以指示在一小时内每隔5分钟。4个额外的LED被用来指示时间,每次5分钟的时间间隔在1至4分钟。 该电路是由一个小的12.6伏的中心抽头线变压器供电,并在60周期线频率用于时基。变压器是连接在一个全波,中心抽头产生约8.5伏管制DC配置。一个47欧姆的电阻和5.1伏,1瓦齐纳调节的74HCT电路供电。 一个14级74HCT4020二

2014-3-15

锯齿波发生器可以是使用一个简单的555定时器IC、三极管在电路图所示的创建。 请注意,锯齿波信号在电容器的两端输出。该1N4001二极管使电容两端的最低电压接近0V。 该电路的频率 了: f = (Vcc-2.7)/(R*C*Vpp) VCC = 电源电压 VPP = 峰值所需的输出电压 选择合适的R,C,VPP 和Vcc值来获得所需的F值。

2014-5-13

下面的两个电路示出了使用555芯片构建的单稳态电路,按下按钮后继电器吸合,且在预定的时间后关闭。在左侧的电路可用于较长的时间周期,只有按钮被释放后继电器才会关闭。需要更短的时间,电容器可以被用来隔离开关,以便只有开关闭合初始发送一个短时触发信号给555芯片,且按钮释放与否不影响继电器关闭。 在空闲状态时,在引脚3的输出将是低电平,继电器关闭。触发输入(引脚2)为高电平。当按钮被按下,0.1uF的电容给引脚2输入触发信号,使引脚2的电压在几毫秒内变为低电平。这将触发555集成电路,并启动定时周期

2014-3-18

555时基电路构成的60秒定时器,电路简洁:

2008-9-4

功放定时器电路 功放闲置15分钟自动关闭电源 电路图 零件: R1,R8 1K 1/4W电阻 R2,R3 4K7 1/4W电阻 1/4W电阻R4 22K 1/4W电阻R5 4M7 R6,R9 10K 1/4W电阻 1/4W电阻R7 1M5 R10 100K 1/4W电阻 R11 15K 1/4W电阻 1/4W电阻R12 10M 1M 1/4W电阻R13 1/4W电阻R14 8K2 1/4W电阻R15 1K8 C1470F25V电解电容 C2,C3,C6 100nF的63V涤纶电容器 C4,C5

2013-11-14

芯片LC901原为电风扇程控集成电路,用于电风扇的风速调节。本电路利用其分档控制功能制作成具有弱光、中光、强光和关4挡控制的调光器,而且还具有0.5h、1h、2h和4h四种不同时间的定时控制。调光的功率驱动器件为可控硅,它受LC901的控制,本电路用到四个双向可控硅元件。

2009-5-10

3个晶体三极管,1个晶体二极管,2个电阻,1个电容,加上1个微动开关就是全部的元器件。它可以提供数秒到数分钟的定时操作。本电路原为学生实验制作电路,但在很多的简单应用场合是有用武之地的。 电路原理:电路上电后,按一下微动开关AN,电容C即被充电,其两端的电压与电源电压相同,此电压经电位器W为三极管T1提供基极偏流,T1导通。随之T2导通,经二极管D为T3提供基极偏流,T3集电极驱动负载工作。 松开AN后,电容C上的电压继续为T1提供偏流维持负载的工作,当C上的电压缓慢降至约1.4V以下时(低于

2009-5-1

输入R1、R2和C值,然后按计算按钮来求解正时间间隔(T1)和负的时间间隔(T2)。例如,一个10K电阻(R1)和100K电阻(R2)和0.1 uF电容将产生7.62毫秒正时间间隔(T1)和6.93毫秒负时间间隔(T2)。频率将是大约70赫兹。 R1应不小于1K,C应不小于0.0005 uF。 正的时间间隔(T1)= 0.693 *(R1 + R2)* C 负的时间间隔(T2)= 0.693 * R2 * C 频率= 1.44 /((R1 + R2 + R2)* C) var R1, R2, C

2014-3-15

本电路由三个相同的施密特触发器组成闭环回路,首尾相接,每个触发器的延时时间为t D =1.1(RP+R)C,延时时间t D 就是C上的电压升高到 1 / 3 V DD 所需要的时间。而555复位后,C上的电荷是通过R、W对前一级IC的输出端(3脚)进行灌电流放电的,因而与C的充电时间常数一样。因此,每个触发电路的输出端每改变一次要经过三个单稳触发电路传输,所需时间是3t D 。故每个IC的输出周期T=6t D 。对应的频率 f=1/T=1/61.1(RP+R)C 从一个闭环周期来看,每个tD

2009-3-29

铅酸电池成本低、技术成熟、使用性能稳定、原料来源丰富、铅回收率高成为各电动车生产商的首选,与铅酸电池相对应的充电器也繁荣于市场。 目前市场上电动车铅酸电池充电器的设计方案大致有两类:第一类是二阶段式,即先恒压充电,充电电流随铅酸电池电压上升而逐渐减少(即充电电流先大后小),当铅酸电池电能补充到一定程度后,铅酸电池的电压也会上升至充电器的设定值,充电器的红色指示二极管熄灭,绿色指示二极管随即点亮,充电器自动转入第二阶段的涓电流浮充充电;第二类是三阶段式,即先恒流充电,而后恒压充电,当铅酸电池的电压

2011-1-7

 ……

电子爱好者 DIANZIAIHAOZHE.COM