电子爱好者

LM324是四运放集成电路,本文介绍用LM324制作的两款LED电平指示器电路。LED电平指示器常应用于音频电路及功放电路中的输出电平指示。 1、首先介绍的LED电平指示器带有可调增益放大级,既可以接在音频功放电路的输出端,作为功放输出电平指示,也可以接在音频前置放大电路输出端(音量控制电路之前),作为前置级的电平指示器。 电路见下图 电路中,由LM324运放构成一个增益可调的放大前级,可调电阻RP用来调节增益量;LED驱动电路由三极管V、电容器C3、稳压二极管VS,电阻器R1一Rn、

2009-3-10

该电路可以驱动模拟动圈式表头,用作音量电平表。 该指针式音量电平表电路的左侧输入端连接到音频功率放大器的输出端。电平表的工作原理很简单,T1和T2增加信号强度,然后由两个二极管整流并施加到表头。电容器C3和C4确保该电压稍微变平滑,避免表头指针过于快速响应。 该电路必须被校准。为了这个目的,将电平表连接到音频信号发生器,并在1000赫兹提供0.3V信号。然后调节P1至最上端。调节P2使仪表满偏转。调节P1,使表针显示在0.5毫安。 创建两个这样的电路可用于立体声电平表。 R1 = 1 M R2

2014-5-3

LM324的四个运放同相输入端连接于由V(2AP9)、R10、C2组成的整流电路输出端,作为信号的输入端。输出端分别通过限流电阻R6、R7、R8、R9接有发光二极管V1、V4、V3、V2。反相输入端分别经电阻分压网络RP1、R2、R3、R4、R5分压后加上量值不等的正电压。 无信号输入时,四个运放同相输入端皆为零电平,因反相输入端皆为正电位,所以各运放输出低电平,因此V1~V4各发光二极管均不发光。有信号输入时,信号经整流后的对地电压(电位)若仅大于第2脚电位,则第1脚的发光二极管V1发光。若同

2009-5-13

这个简单的LED音量电平表采用一块LM3915集成电路,只有很少的外围元件。 从电平表的输入信号被置于IC1的管脚5。IC1的引脚9是显示模式选择(线或点显示)。当9脚悬空IC1工作在点模式。当引脚9连接到引脚3,IC1工作在线模式。显然,在点模式整个电路消耗更少的功率。 R1 = 1 k C1 = 2,2 F D2-D11 = LED IC1 = LM3915或LM3916

2014-5-3

LM3915音频电平指示器电路 该电路只使用一个IC和极少数的外部元件。 这10个LED显示音频电平。 电源电压可以从12V到20V,但建议的电压为12V。 LM3915是单片集成电路,感官的模拟电压水平和驱动器提供了一个对数十个LED 3 dB /步模拟显示。 LED电流驱动器调节和可编程的,不再需要的电流的限流电阻。 该IC包含一个可调的电压基准和一个准确的十个步骤分压器。 高阻抗输入缓冲器的接收信号下到地面和高达1.5V之内的正电源。 输入缓冲器驱动10个单独的比较器参考精度分压器。

2013-11-14

声级计电路 这个漂亮的声级计是一个完美的芯片更换为标准的模拟仪表。它完全是固态,将永不磨损。整个电路基于LM3915音频电平IC,仅使用了很少的外部元件。 电路图 原来的示意图 零件 C1 2.2uF的25V电解电容 1/4W电阻R1 1K D1 1N4002硅二极管 LED1-LED10标准LED或LED阵列 U1 LM3915音频电平IC MISC板,电线,插座为U1 笔记 1、V +可以在3V到20V。 2、是专为输入标准音频线电压(1V PP)的最大输入电压为1.3V。 3、引脚9可

2013-11-14

该电路采用两个四运算放大器组成一个八LED音频电平表。在这个特殊的电路中使用运算放大器是LM324。它是一种流行的IC,很容易买到。 1K的电阻器在电路中是必不可少的,以使LED的打开在不同的音频电平。没有理由为什么你不能改变这些电阻,虽然上述任何5K可能会导致某些LED的来从来没有打开。这个电路是容易扩展与更多的运算放大器,并且不限于与LM324使用。只要你确保一切都正确连接几乎任何运算放大器将工作。 在原理图上的33K电阻是保持输入到电路信号在一个低的水平。这是不可能的,你会发现一个33K

2014-5-5

由分立元件构建音频电平表电路,可以用一个100uA表头与该电路连接。 该电路具有约20Hz到50KHZ的平坦响应。输入灵敏度为100mV,为100uA表头一个满刻度偏转。电路建立在两个共发射极放大器,第一级发射极有一个可调电阻,它可以被调整。最后阶段被偏置在大约一半的电源电压,使得可以到达最大交流电压摆幅。音频频率,都可以通过10u中的隔直流电容器和全波桥式整流器的信号转换为一个可变直流电压。

2014-5-5

1.组成开关电路 图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关断开;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关接通.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态. 2.组成逻辑电路 图3电路为与门逻辑电路。其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑

2009-6-1

这款叮咚门铃采用数字集成电路CD4017与CD4069来制作,喜欢数字电路的电子爱好者应该比较喜欢。 电路原理分析 通电或按下门铃按钮SB后的CD4017复位,YO输出高电平,Y1和Y2输出低电平。 YO输出的高电平使VD5截止,叮音振荡器起振,扬声器发出叮音;同时,Y1输出的低电平使VD6导通,咚音振荡器停振;而Y2输出的低电平因接CE端,使CP端能够接受计数脉冲的触发。 220V市电经变压器降压,VD1~VD4整流、C1滤波获得+8V直流电压。IC1为十进制计数分频器CD4017,YO,Y

2008-11-27

这里是12伏/2安培灯调光器,通过控制无稳态定时器555振荡器的占空比,可用于调暗标准25瓦特汽车制动或备用灯泡。 当电位器是在最上面的位置时,电容将通过两个1K的电阻和二极管快速充电,产生一个短的时间间隔高电平脉冲和长间隔低电平输出,灯泡亮度变暗。当电位器处于最低位置时,电容器充电同时通过1K电阻和50K的电位器,并通过1K电阻放电,产生一个长时间间隔的高电平脉冲和短间隔的低电平输出,灯光亮度近全功率输出。在200赫兹的方波的占空比可以在从约5%变化至95%。 下面的两个电路示出了灯连接到正或

2014-3-13

下面介绍的实用定时开关,定时时间在1小时内连续可调;定时时间一到后,即切断了电源,而且定时开关本身不消耗电能。 电路原理: 定时开关的电路图如下所示: 此定时开关主要由与非门I和晶体管开关电路组成。与非门电路的逻辑功能是当输入端全部为高电平1时,输出才为低电平0;只要有一个输入端为低电平0时,输出就为高电平1。这个逻辑关系可以简化为:见0出1,全1为0。掌握了这个逻辑关系就可以分析有关与非门的电路了,图中与非门有两个输入端,即5、6两脚,画有小圆圈的4脚为输出端,方框中表示与非门。

2008-10-29

光施密特触发器电路共五个元件组成,以555定时器为核心元件。光敏电阻RG的阻值会随着光照强度的变化而变化,利用555内部的两个比较器的复位和置位特性,便可组成施密特触发器。 当光线强时,光敏电阻RG呈低阻,555定时器2脚呈低电平( 1 / 3 V DD 触发电平),555置位,继电器K不动作;当光线弱时,光敏电阻RG呈高阻,555定时器6脚电平高于 2 / 3 V DD 阈值电平,555复位,继电器K吸合。 继电器K用于控制后级电路。

2009-3-28

下面的电路采用CMOS双D触发器(CD4013),用瞬时按钮切换继电器或其他负荷。一些按钮可被并行连接,以从多个位置控制继电器。 从按钮取得的触发电压通过一个小(0.1uF的)电容器耦合。来自Q(引脚1)输出高电平由上部晶体管反相,提供一个约400毫秒低电平的复位电平到复位引脚,在此之后,复位引脚返回到高电平状态并复位触发器。下触发器部被配置为触发操作和时钟线的上升沿或在同一时间作为上触发器移动到与设定条件改变状态。开关去抖由于短持续时间相对设置的信号与持续时间长的电路被复位之前。在Q或输出端

2014-3-17

LW80M的典型应用电路 MIC2950/MIC2951构成的固定输出的稳压电源电路 如图所示电路是采用MIC2950/MIC2951构成的固定输出的稳压电源电路的典型应用。图(a)中的电路输人电压为2.0~30V,输出电压为 1.25~29V,输出电流为150mA。图(b)是5V、100mA的稳压电源。③脚为控制开/关机端,可与CMOS和TTL兼容,高电平关断,低电平启动。⑤脚为出错报警,低电平表示出错,高电平表示正常。 LW80L系列固定输出正负电压双输出集成稳压器的典型应用电路 LW8

2009-6-18

下面的电路示出了相对于触发输入时产生被延迟的一个正脉冲,由两个555定时器构建。 该电路类似于前文的一个,但采用两个阶段,使两脉冲宽度和延迟可被控制。 当按钮被压下时,第一级的555定时器输出将转为高电平,并保持接近电源电压,直到延迟时间已过,而在这种情况下,大约是1秒。 在第二阶段555定时器将输出低电平,因为它的引脚2需要一个低电压才能触发,所以在第二级的输出保持低电平,继电器保持断电。 在延迟时间结束时,第一阶段返回到低电平,而下降的电压的输出使所述第二阶段开始它的输出周期也是1秒左右,如

2014-3-18

箝位电路 箝位的作用是使信号的起始电平固定在某个数值上,以图1说明: 当电路输入一矩形波信号Ui。若无D时,Ui中的直流分量U被C隔开,只有交流分量传至输出端,使用输出信号失去直流分量而改变了起始电平,用了箝位二极管D后,当Ui=E时,D截止,C充电,因时间常数RC很大,所以输出Uo稍微下降了△U;当Ui突然变至零时,D导通;C经D很快放电,输出从-△U很快趋于零,因此输出信号被D箝位于零起始电平,也可以说,恢复了直流分量。 图1二极管箝位电路 箝位电路可以把信号箝位于某一固定电平上,如图2(

2009-5-13

在很多场合,需要几十进制计数/分配器,而4017按其正常的级联不能达此目的。为此,笔者设计制作了将4017扩展成任意进制计数/分配器的两个电路,现简介如下。 图1是用非门和或门与十进计数/分配器4017组成的任意进制计数/分配器。4017的负脉冲输入端{13}脚为低电平时,允许计数,当它为高电平时,禁止计数,并有将计数保持的功能;与或门和非门配合,可以实现4017的多级连接,组成任意进制计数/分配器。在Cr置零的情况下,各级4017的输出端除{3}脚外均为低电平,{11}脚也为低电平,IC1的{

2009-6-12

以下所述电路用于3V供电的微型直流电机的驱动,这种电机有两根引线,更换两根引线的极性,电机换向。该驱动电路要求能进行正反转和停止控制。 电路一 如下图所示,些电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VR1Q1MQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。此时,Q2和Q3导通,Q1和Q4截止。P2.

2008-10-21

声控电路开关由声控电路、单稳延时电路和可控硅驱动电路组成。 电容降压整流电路为声控开关电路提供VDD=6V直流电压。IC1采用专门的声控集成电路SK-Ⅰ,该集成电路内含双稳态触发器和三极放大器。平时,IC1的输出端9脚呈低电平;而当拾音器B收到击掌声等音响信号时,IC1内的双稳态翻转,9脚转呈高电平,VT1饱和导通,由于IC2(555)的2脚触发电平小于1/3VDD,则555置位,3脚呈高电平,SCR触发导通,灯亮。 555和R4、C4等组成单稳定时电路,定时时间即单稳态的暂稳时间TD

2009-3-10

由MIC接收的声音信号通过C1进入运算放大器IC1进行放大,并由IC1的6脚输出,电阻R3用来调整电路对声音信号的灵敏度。当外界安静时,因为C1具有隔离直流的作用不可能向IC1的2脚提供电流,所以IC1的6脚输出高电平(若IC1输出低电平,则其2脚电平低于3脚,输出应为高电平,前后矛盾)。当外界有足够强的声音信号时,MIC上产生交变电压信号,从而使IC1的6脚输出负脉冲信号。 IC2(NE555)这里被连接成单稳态触发器,其作用是将有足够强度的声音(如掌声)触发信号整形,延长并由IC2的3脚

2009-1-5

两只三极管Q1、Q2及相关阻容元件组成互补双稳态电路,每按动一次微动开关SW1,两只三极管的工作状态就改变一次,Q2的集电极电位相应地在高电平和低电平之间变换。高电平时Q3导通,驱动功率管Q4接通后级电路电源;低电平时Q3截止,同时功率管Q4也截止,后级电路无工作电源。

2009-5-31

适用机型:熊猫2918 1. I 2 C总线维修方式的进入 同时按下遥控器上F键和AV/TV键,再依次按动1键0键4键8键后,整机进入维修调整方式。 2. I 2 C总线维修方式的退出 调整完毕,按遥控器上POWER ON/OFF键,便退出维修方式。 3. 调整方法 (1)调整项目的选择 同时按下F键与 口键或F键与V键,可选择所需的调节项目。 (2)调整电平(数据)的选择 按动VOL+键,电平增加;按动VOL-键电平降低,电平的变化由屏幕下边光标显示。

2009-5-24

下面介绍的实用定时开关,定时时间在1小时内连续可调;定时时间一到后,即切断了电源,且定时开关本身不再消耗电能。 电路原理 : 定时开关的电路如下图所示: 定时开关主要由与非门I和晶体管开关电路组成。与非门电路的逻辑功能是当输入端全部为高电平1时,输出才为低电平0;只要有一个输入端为低电平0时,输出就为高电平1。这个逻辑关系可以简化为:见0出1,全1为0。掌握了这个逻辑关系就可以分析有关与非门的电路了,图中与非门有两个输入端,即5、6两脚,画有小圆圈的4脚为输出端,方框中表示与非

2009-8-26

555定时器在这里接成单稳态电路。平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。 当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。 当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。

2009-4-22

门是这样的一种电路:它规定各个输入信号之间满足某种逻辑关系时,才有信号输出,通常有下列三种门电路:与门、或门、非门(反相器)。从逻辑关系看,门电路的输入端或输出端只有两种状态,无信号以0表示,有信号以1表示。也可以这样规定:低电平为0,高电平为1,称为正逻辑。反之,如果规定高电平为0,低电平为1称为负逻辑,然而,高与低是相对的,所以在实际电路中要选说明采用什么逻辑,才有实际意义,例如,负与门对1来说,具有与的关系,但对0来说,却有或的关系,即负与门也就是正或门;同理,负或门对1来说,具有或的关系

2009-5-13

第1脚(接地;Ground):接电源负极。 第2脚(触发;Trigger):当第2脚电压低于1/3 Vcc时会令第3脚输出高电平,且第7脚对地开路。 第3脚(输出;Output):555的输出脚,输出电平是高是低,完全受第2、4、6脚控制。 第4脚(重置;Reset):第4脚电压小于0.4伏特时,第3脚输出低电平,同时令第7脚对地短路。 第5脚(控制电压;Control Voltage):这一脚与比较器的参考电压点相通,允许由外界电路改变第5脚及第6脚的动作电压。平时大多接一个0.01F以上之电

2008-9-4

下面的两个电路示出了使用555芯片构建的单稳态电路,按下按钮后继电器吸合,且在预定的时间后关闭。在左侧的电路可用于较长的时间周期,只有按钮被释放后继电器才会关闭。需要更短的时间,电容器可以被用来隔离开关,以便只有开关闭合初始发送一个短时触发信号给555芯片,且按钮释放与否不影响继电器关闭。 在空闲状态时,在引脚3的输出将是低电平,继电器关闭。触发输入(引脚2)为高电平。当按钮被按下,0.1uF的电容给引脚2输入触发信号,使引脚2的电压在几毫秒内变为低电平。这将触发555集成电路,并启动定时周期

2014-3-18

采用555时基电路制作的双键触摸开关如图所示。 图一 电路中,M1是开触摸片,当人手触碰时,人体感应的杂波信号加到555时基电路的低电平触发端2脚,电路置位,3脚输出高电平,继电器K得电吸合,其常开触点闭合,被控电路通电工作。M2为关触摸片,一旦触碰,人体感应的杂波信号加到555的阈值端6脚,电路复位,3脚输出低电平,继电器失电跳闸,被控电器停止工作。 图二 图二是一个电源电路采取特殊设计的触摸开关,它对外仅两根引出线,因此可直接取代普通开关而不必更改电源布线。EL是不大于25W的白炽灯

2009-3-1

这是一个应用在立体声音响设备的音调控制电路,使用一个LM1036N集成电路,具有低音控制、音量控制、响度补偿、平衡控制、高音控制功能。低音、高音、音量、平衡四个控制端采用直流电平控制,这适合通过远程控制或者数字电路控制。 功能特色 宽电源电压范围,9V至16V 大音量控制范围,75分贝典型 音调控制,15分贝典型 信道分离,75分贝典型 低失真,0.06%典型的在0.3 Vrms的输入电平 高的信噪比,80分贝典型的在0.3 Vrms输入电平 很少的外部元件 注:电源电压VCC 9V至16V,

2014-5-13

 ……

电子爱好者 DIANZIAIHAOZHE.COM