电子爱好者

达林顿三极管又称复合三极管,它将二只三极管组合在一起,以组成一只等效的新的三极管。达林顿三极管的放大倍数是二只三极管放大倍数之积。达林顿三极管可以看作是一种直接耦合的放大器,三极管间以直接方式串接,没有加上任何耦合元件。这样的晶体管串接型式最大的作用是:提供高电流放大增益。 达林顿的特性: 高电流增益 电压增益约等于1(小于1) 高输入阻抗 低输出阻抗 漏电流影响极大,造成电路不稳定 两只三极管同为NPN型,将前级三极管的射极电流直接引入下一级的基极,当作下级的输入。这种使用相

2009-2-26

如下图所示为典型的达林顿放大器,信号由Q1的基极输入,由Q2的射极输出,Q2基极与Q1射极直接连接,所以Q2基极电流等于Q1射极电流。 两级放大器都采用共集电极电路,以获得高电流增益。达林顿电路中,输入电流为Q1的基极电流,输出电流为Q2的射极电流,我们可验证输入与输出间具有高倍率的电流放大作用: 所以达林顿电路的输出电流几乎放大了两个电晶体值的乘积的倍率,即1 2倍。 第一步:列出输入方程式与输出方程式: 输入方程式: V CC =I B1 R B +V BE1 +V

2009-2-26

把两个或两个以上三极管的电极适当地直接连接起来,作为一个管子使用,即称为复合管 。由于复合管由达林顿提出,故许多文献中亦称它为 达林顿管 。 复合管有两种连接方式:一是两只同类型管子构成,如图1a、b所示:二是由不同类型的两只管子构成,如图1c、d所示。 图1 复合管的构成原则和特点 (1)把两只三极管连成复合管,须保证每只管子各极电流都能顺着各个管子的正常工作方向流动,且复合管各极电流要满足等效三极管的电流分配关系; (2)复合管的管型和电极性质与第一个管子相同; (3)复合管电流放大倍数12

2009-5-9

2N6578达林顿功率开关三极管主要应用于开关电路、功率放大电路中。采用TO-3 (TO-204AA)的封装,其外形和管脚区分见附图。2N6578具有100~20000的直流电流放大倍数(HFE),视工作状况而不同,如下所列: 放大倍数:工作条件 200: IC = 0.4A VCE = 3V 2000-20000: IC = 4.0A VCE = 3V 500-5000: IC = 10A VCE = 3V 100: IC = 15A VCE = 4V 2N6578极限参数: VCBO 120

2009-5-20

MC1413 驱动器集成电路内部有7个NPN型达林顿晶体管阵列组成,适合驱动小功率灯组,继电器阵列,垂直控制电路组等等,用途广泛,在工业和消费类电子中均有应用。其晶体管阵列耐压高,还设有反向电压抑制二极管,使其可稳定驱动感性负载。峰值浪涌电流500毫安,可直接驱动小功率白炽灯。 MC1413为双列16脚封装,有直插式和表面安装式两种外形,如下图所示: MC1413一个驱动级的电路示意图: MC1413内部电路与管脚连接示意图:(顶视图) MC1413最大额定值: 输出

2009-5-27

无触点自动交流稳压器参数: 适应输入电源电压范围(Ui):120-240V 输出电压范围(Uo):220-240V 过压、欠压保护:输入电压低于120V或高于240V时,稳压器自保护无输出电压。 该自动稳压器电路如图所示。 电路中用到了一块MC1413集成电路,它是一个反相驱动器电路,内含达林顿管阵列,在本电路中用以驱动充当固态继电器的可控硅元件。MC1413内有7个达林顿管,参数互相接近:1~7脚为达林顿管的基极;8脚接地;9脚可用来接高电位放电;10~16脚为达林顿管的

2009-5-27

此电源是专为业余无线电爱好者(HAM)使用而设计,已运作超过10年。 它的设计非常简单,全部由分立元件组装而成,最昂贵的元件是600VA环形变压器,它可以由其它类型变压器所取代,只要它具有1720V输出电压,并且功率能够满足需要。 稳压参考电压是由7.5V稳压二极管得到的(6V88V2),由R5、VR2和R6组成分压器监测输出电压变化并传输给Q2,经过达林顿放大器Q3,比较电压输出的驱动器Q4和4个NPN型功率晶体管2N3771控制输出电压。 滤波电容47毫法(mF),也就是47000微法(u

2013-12-15

这种低电压电源可以为各种12V(标称值)直流设备供电,如双向无线电通讯设备和音响设备。它可以提供13.8V电压4安培电流输出,功率55瓦。 原理 电源变压器120VAC转换成38VAC中心抽头。这被馈送到两个二极管全波整流把交流电转化为直流电。12000 uF的电容进行滤波,100nF的电容进行高频滤波。 该稳压器配置通过添加一个高电流三极管,电压调节器的电流容量可以被大大地增强。在这个电路中,调节器被改为使用一个可调节的类型(LM317L)和一个高增益PNP达林顿晶体管(2N6052)。该L

2014-3-2

晶体管型号 反压Vbeo 电流Icm 功率Pcm 放大系数 特征频率 管子类型 2SB1013A 30V 0.5A 0.3W * * PNP 2SB1020 100V 7A 40W 6000 * PNP(达林顿

2009-4-12

A类音频放大器(甲类音频功放) A类放大器是相当浪费电力的,但它具有充沛的驱动能力,电路简单。下面是一个简单的达林顿晶体管构成的A类音频放大器,使用一个5伏电源: 概要 电路由5V稳压电源供电。工作效率低于25%,静态时也会有显着的直流电流流过扬声器。但是,看看它是多么简单!电压增益是大约只有20,输入阻抗大约12k。 该图显示了两个偏置电阻的值,与相应的扬声器的阻抗对应使用。使用150K偏置电阻和8欧姆的扬声器,电路电流约210毫安(1瓦),并能提供约250毫瓦的输出到扬声器。扬声器应额定功

2013-11-16

LM4702是美国国家半导体公司于2006年9月宣布推出的一款高性能音频功率放大器驱动IC,用它驱动的功率放大器最大可获得300W的输出功率。 图1LM4702管脚功能 LM4702供电电压范围宽,内部还有静音功能和多种保护功能,既适用于高级家用音响系统,也适用于专业级音响设备。LM4702内含两组独立的音频放大及驱动部分,可以驱动多个大功率晶体三极管或多对达林顿晶体管,适用于每声道输出25W~300W功率的音响系统。 图2LM4702功放驱动器件典型应用电路 在国半公司的主页

2009-3-18

晶体管型号 反压Vbeo 电流Icm 功率Pcm 管子类型 MJ10012 400V 10A 175W NPN(达林顿) MJ10015 400V 50A 200W NPN MJ10016 500V 50A 200W NPN

2009-4-12

W723组成的输出电压比基准电压低的应用电路 W723的高压限流型扩大输出电流应用电路 正固定输出电压W723集成稳压器的典型应用电路 W723构成的汽车用的8A直流稳压电源 由W723正集成稳压器构成的汽车用的输出电流为8A的13.8V直流稳压器电路如图所示。该稳压器采用外接达林顿管来进行扩流,电路中的限流电阻Rsc 可以采用PCB上的铜皮来制成印刷电阻。该放大器的反相输入端(W723的④脚)由跨接在输出端的一个10k的电位器R2的中心抽头馈入,以获得所要求的l3.8V输出电压。误差放大

2009-6-18

上电延时继电器 下面是上电延时继电器电路,它接受一个普通的双极晶体管的发射极/基极击穿电压的优势。一个2N3904晶体管的反向连接的发射极/基极结被用作8伏的齐纳二极管,其产生更高的导通电压为达林顿连接的晶体管对。大多数任何双极晶体管都可以使用,但是齐纳电压将在约6至9伏的变化取决于所使用的特定的晶体管。时间延迟是使用47K电阻和100uF的电容大约7秒且可以通过减小R或C值降低。较长的延迟可以用一个更大的电容来获得,定时电阻可能不应该超过47K。该电路应与大多数任何12伏直流继电器工作,具有7

2014-3-15

这个光控警报器在黑暗的房间里突然打开能让不知情的受害者湿裤子^_^。因为它发出的警笛声很响!功率为3W的模块直径为50mm隔膜产生一百二十三分贝声级的音量。它的音调在2kHz和4kHz之间。低亮度环境光水平通过晶体管的比较器和一个达林顿驱动器接通警笛模块和LED。光强度阈值可调。 光控警报器示意图 光激活警报器电路原理图 警笛模块的照片 警笛模块 输入分压器 LDR和R1和R2形成一个电压分压器,输出电压是依赖于光的强度。当光线水平提高,LDR电阻减小,和R1连接点电压上升。当它到达6.8V

2014-5-24

该音频功率放大器电路简单,成本低。最佳的电源电压为50V左右,但这款电路能工作在从30到60V。最大音频输入电压大约是0.8 - 1V,输出功率为60W左右。末级晶体管2N3055可以是任何NPN型功率晶体管,但不要用达林顿类型。 放大器原理图 一些意见: 电容C1调节低频(低音),随着电容的增加,低频越来越响亮。 电容器C2调节更高的频率(高音),随着电容的增加,在较高的频率越来越响亮。 这是一个B类放大器,这意味着,推挽输出晶体管必需施加一个静态电流,即使是在没有任何输入信号。该电流

2013-12-13

这是一个简单,低成本的60W音频功率放大器。最佳的电源电压为50V左右,但这款电路可以工作30至60V。最大输入音频电压大约是0.8 - 1V。正如你所看到的,在这种设计的组件有一个很大的选择余地,所以你可以用几乎任何你能找到的任何组件构建它。输出功率晶体管可以是任何类型的NPN型,但不使用达林顿类型。 电容C1调节低频(低音),电容量增加,低频率越来越响。电容器C2调节高频(高音),电容量增加,在较高的频率越来越低。 这是一个B类放大器,这意味着,一个静态电流必须流经末端的晶体管,即使是在没

2014-5-16

使用分立元件制作15瓦的音频放大器。 该放大器采用了双20伏电源,并提供15瓦特功率到8欧姆负载。Q1工作在共发射极电路模式,信号被传递到偏压链组成的Q8,Q9,D6,D13和D14。Q8和Q9提供的恒定电流通过偏置链,以减少失真,由一个离散的达林顿对管(Q2,Q4)和(Q7,Q11)构成的输出级。最后两个功率晶体管,特别是2N3055和MJ2955。7.02K的电阻R16是用一个4.7K,680欧姆,和两个820欧姆的串联组合制成。在1.1K电阻R3是使用100欧姆和一个1K的电阻制成。您可

2014-5-5

电子门铃 该电路模拟类似钟声的声音。 底部的两个门电路形成一个方波音频振荡器,驱动2N4401的基础上,将其打开和关闭在一个音频率。前两个门电路产生短暂的每秒一次低脉冲,10 uF的电容通过二极管慢慢地放电,这在2N4401集电极产生衰减的电压。其结果是2N4401的集电极输出迅速上升然后缓慢衰减的方波。达林顿射极跟随器缓冲方波然后驱动一个小喇叭。 概要 声音频率由1000 pF电容决定,钟声周期由0.1 uF的电容决定。10 uF电容决定的钟声衰减速度,3.3 k/3.3 uF的软化钟声上升

2013-11-17

直流电动机正反转控制器(H桥) 这些电路通过两个输入线反转电动机。两个输入必须是一个高电平和一个低电平。如果在同一时间两个输入都变为低电平,晶体管将短路。这意味着你需要控制时序的输入。 此外,一些晶体管类型的H桥的电流能力是有限。 在此电路中驱动器晶体管工作于射极跟随器模式。 在PC板上两个H桥 H桥采用达林顿晶体管

2013-11-11

关断延迟 这4个电路都是一样的。按钮被释放后,它们为一个项目提供短时间的供电,并且电压是逐渐下降的。您可以选择PNP或NPN晶体管,达林顿晶体管。 延时电路 这3个电路的功能是完全一样的。他们将在一段时间后打开继电器。 该电路是用电容充电原理实现延时,当电容充电至比较高的电压时继电器吸合。图1的电容电压将在5V6以上。图2中的电容电压将在3V6以上。在图3中的电容电压会在7V以上。 在下面这个电路中的继电器将在按钮被释放后保持几秒钟。 1k电阻值和电解可以调整,以适应个性化需求。

2013-11-11

1、TAA865运放制作的260S延时电路 延时电路电源接通时TAA865输出端的继电器立即吸合,接通被控制单元的电源。经过一定的延时时间之后继电器释放,断开被控制单元的电源。 电路工作电压12V,延时时间约260S,重复准备时间约12S 2、采用TCA335A运放制作的0.2~100S延时电路 带达林顿管输入端的运算放大器特别适合用于延时电路。本电路延时时间为0.2~100S,重复准备时间<250ms。若将端子Ⅰ同A点、Ⅱ同B点连接则为延迟释放电路;如果Ⅰ同B点、Ⅱ同A点连接,则为延迟吸合

2009-3-15

晶体管型号 反压Vbeo 电流Icm 功率Pcm 放大系数 特征频率 管子类型 MJ10012 400V 10A 175W * * NPN(达林顿) MJ10015 400V 50A 200W * * NPN MJ10016 500V 50A 200W * * NPN MJ10025 850V 20A 250W * * NPN MJ11032 120V 50A 300W * * NPN MJ11033 120V 50A 300W * * NPN MJ13333 400V 20A 175W * *

2009-5-27

闪光灯无线触发器电路,当你需要补充一个或几个闪光灯单元可以被使用。这从根本解决了同步触发问题。它通过看到第一次闪光(使用光电晶体管)几微秒后触发另一组闪光灯。该电路的灵敏度是可调节的,以补偿环境光或主闪烁光强度。 配件 R147K线性电位器 R2,R33K 1/4W电阻 R4220欧姆1/4W电阻 R5680欧姆1/4W电阻 C110UF 25V电解电容 C20.047UF 25V陶瓷电容器 Q12N5777 NPN达林顿光电晶体管 Q2,Q32N3904 NPN晶体管 SCR1400V 2A

2014-3-6
电子爱好者 DIANZIAIHAOZHE.COM