电子爱好者

该电路是一个三角形的波形发生器,使用尽可能少的元件。555定时器IC,2个电阻和两个电容器构成三角波发生器电路。IC构成50%工作周期不稳定的方波振荡器电路,并从3脚输出方波信号。然后通过RC整形电路输出三角波信号。 当555方波输出变高,C2通过R2开始充电,C2电压增加。当集成电路的输出变成低电平,C2开始通过R2放电,C2电压降低。在C2两端产生的波形呈三角形状。要获得最好的波形线性度时,R2和C2是尽可能的大。按图示元件值,输出峰峰值为0.5 V,约200赫兹的频率。 三角波发生器电路图

2014-5-25

如图所示,555时基芯片和R1、R2、C1组成无稳态多谐振荡器,f=1.44/(R1+2R2)C1,力求参数给出的振荡频率约10KHz。输出的振荡方波加至高频变压器初级线圈L1上,次级L2感应出电压给电池充电。 高频变压器初次级用合适的漆包线各绕200圈,变比1:1,也可根据实际需要改变变比。 这个电路样式主要是实现了前后级电路的隔离,在一些电路应用中是需要的,实践中可灵活运用。

2009-9-1

该信号发生器采用了精密波形发生器单片集成电路ICL8038。该电路能够产生高精度正弦波,方波,三角波,所需外部元件少。频率可通过外部元件调节。ICL8038的正弦波形失真=1%,三角波线性失真=0.1%,占空比调节范围为2%~98%。 ICL8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500F开始,依次减小十倍,直到5500pF,频率范围对应为0.05Hz~0.5 Hz~5Hz~50Hz~500Hz~5kHz~

2009-5-13

这里是使用一个LM1458双运算放大器构建的约10千赫的简单三角/方波发生器。 半周期的时间间隔大约是R * C,输出将供给的电流约10毫安。 三角形振幅可以通过调整47K电阻被改变,并且波形的偏移可以通过在输出增加串联的电容器改变。

2014-3-13

如上电路,采用一片74HC14六反相施密特触发器,其中U1A构成方波振荡器,U1B/E/F缓冲放大驱动Q1,U1C/D二次反相驱动Q2,如此Q1和Q2交替导通,在T1次级输出交变电压。 74HC14是一款高速CMOS器件,主要参数如下: 典型电源电压:5.0V 正向输入阀值电压:VT+=1.6V 负向输入阀值电压:VT-=0.8V 驱动电流: +/-5.2mA 传输延迟:12ns(5V) 逻辑电平:CMOS 引脚:14 封装类型:DIP

2014-5-2

说明: 采用ICL8038集成电路的函数发生器。是有四个范围和能力正弦波,方波和三角输出。 笔记 围绕一个单一的8038波形发生器集成电路,该电路产生正弦波,方波和三角波从20Hz至200kHz四种切换范围。有高和低电平输出,其可与该电平控制调整。该项目做出有益的除了任何业余爱好者工作台为好。 allof运算波形生成是由IC1产生。这种多用途的IC甚至有一个扫输入,但不是在这个电路中使用。该IC包含一个内部方波振荡器,其频率由定时电容C1控制 - C4和10K的电位器。电容的容差应为10%或稳

2014-5-8

电子门铃 该电路模拟类似钟声的声音。 底部的两个门电路形成一个方波音频振荡器,驱动2N4401的基础上,将其打开和关闭在一个音频率。前两个门电路产生短暂的每秒一次低脉冲,10 uF的电容通过二极管慢慢地放电,这在2N4401集电极产生衰减的电压。其结果是2N4401的集电极输出迅速上升然后缓慢衰减的方波。达林顿射极跟随器缓冲方波然后驱动一个小喇叭。 概要 声音频率由1000 pF电容决定,钟声周期由0.1 uF的电容决定。10 uF电容决定的钟声衰减速度,3.3 k/3.3 uF的软化钟声上升

2013-11-17

此1.5伏双LED闪光器由一节一号电池供电运行了一年多,并交替闪烁2个LED以约1秒的速度。 该电路采用74HC14的CMOS六反相器,将在非常低的电压下运行(小于1伏)其中一个部分是用来作为一个方波振荡器(引脚1和2),而其他被连接到产生短暂的10毫秒脉冲方波的交替边缘,使LED将交替来回。 每个输出部分使用电容器电荷泵以增加电压让LED工作。该电路从一号电池消耗800uA的平均电流,LED的峰值电流约为40mA,电池电压下降到1.1伏特时电流下降到约10mA。一个碱性一号电池的容量大约为1

2014-3-15

天气渐渐转暖,苍蝇也渐渐会进入我们的视线。本文介绍用555时基电路制作一个电子灭蝇器,用它来对付苍蝇还是比较方便的。 电子灭蝇器是利用加在电击网上的高压脉冲电压击毙触网的苍蝇。使用时网内设下诱饵以吸引苍蝇,对所有飞到灭蝇网上的苍蝇均能予以杀灭。 电子灭蝇器电路如图所示,555l时基电路与电阻Rl、R2以及电容Cl组成无稳态振荡器,从ICl的③脚输出频率约为30Hz、占空比为10%的连续方波。该方波经过电阻R3耦合至三极管VTl、VT2,放大后推动升压变压器T升压,使接在变压器次级的灭蝇

2009-3-7

电路描述 这是用于控制小型直流电动机速度的电路,它工作得很好,采用脉冲宽度调制(PWM)技术。 原理 556双定时器集成电路的左半部分被用作固定频率的方波振荡器。该振荡器信号被馈送到其被配置为可变脉冲宽度单触发单稳态多谐振荡器(脉冲扩展)的556的右半边。单触发的输出是可变宽度的方波脉冲,该脉冲宽度设定与速度控制电位器上的控制电压输入。可变宽度的输出脉冲导通和截止的IRF521 MOSFET晶体管。在MOSFET放大该信号的电流,使得它也足以控制一个小型直流电动机。311比较器用于当控制电压低

2014-3-3

该逆变器电路结构简单,无需特制变压器,输出波形为方波。电路使用了一块SG3524开关稳压电源控制芯片,在本电路中将其应用为方波发生器,驱动功率管完成直流到交流电的逆变过程。SG3524是双端输出式脉宽调制芯片,双列16脚直插式塑料封装(DIP-16),工作电源电压范围8V~35V。 由SG3524芯片构建的逆变器电路如图所示: 电路中除SG3524外的关键元器件是场效应管和变压器,两只场效应管的选择根据需要的输出功率来定,型号要一致,若双管的输出功率达不到要求还可多只并联。变压器用一般

2009-6-17

该闪光器采用双色发光二极管作为闪光器件,形成红、绿光依次交替流水闪光效果,可用作车饰、节日装饰等。 电路原理如图所示。它是由NE555时钟脉冲发生电路、CD4017十进制计数器/分配器电路、三极管驱动电路以及双色发光二极管组成。 由555时基电路和外围元件构成一个时钟振荡器,由RP1、R1、R2和VD1、C1构成的充放电回路,导致ICl(555)的③脚不断输出方波脉冲供给IC2 CD4017。IC2对输入的方波脉冲进行计数/分配,使其输出端Y0~Y9依次变为高电平。当Y0~Y4依次变为高电平时

2008-11-25

这个施密特触发振荡器采用3个晶体管、6个电阻器和1个电容器,以产生一个方波。脉冲波形可以用一个额外的二极管和电阻(R6)来生成。Q1和Q2都与一个共同的发射极电阻(R1)连接,使得一个晶体管的导通将导致其它要关闭。Q3由Q2控制,并提供从集电极的方波输出。 在操作中,通过反馈电阻(RF)对输出电压的定时电容充电和放电。当电容电压上升到高于在Q2的基极电压时,Q1开始导通,从而引起Q2和Q3关闭,输出电压将下降到0。这反过来又产生在Q2的基极电压较低,并导致电容器开始朝着0放电。当电容器的电压低

2014-3-16

该稳压电源可在3V~2000V之间连续调节,主要用于晶体管的耐压测试或其它实验应用,整机电路如图所示: 电路中,由IC2(555时基电路)及其外围元件组成方波发生器,振荡频率为20KHz。方波信号由IC2的③脚输出经三极管VT功率放大后输出到脉冲变压器T的初级 L1,由变压器耦合到次级L2经二极管VD2整流,给C3充电,C3两端的直流电压峰值最高可达2kV。 IC1a和有关元件组成电压比较器,由VD2提供其同相端③脚的基准电压0.7V。比较电压取自VE点,再通过分压器R1和R2的A点经

2009-6-1

12至120伏逆变器电路 这是一个最简单的对称方波逆变器电路,它是电感反馈对称无稳态振荡器。 当你需要一个低功耗120V交流电源为您的设备供电时,这是一个不错的选择。它将提供15瓦交流电源到设备,用于120V交流电源的电源灯,小音响和小家电。 该电路的输出是一个方波,如果在音频设备使用可能会有一些明显的嗡嗡声,电路中的.47 UF电容正是为了减少一些嗡嗡声而设置的。 电路中的晶体管使用高功率PNP晶体管。例如TIP32。 变压器是一个初级120V,次级中心抽头的24伏的变压器。

2013-11-15

如图所示,IC2-1等组成电压过零同步脉冲电路;C4和恒流放电管VT1、VT2等组成负向锯齿波电路;IC2-2等为比较移相电路;VD5为失交保护电路,当控制电压V5上升到负向锯齿波的顶点以上而产生失交及移相方波V6消失时,则由过零同步脉冲的后沿通过VD5在VT3、T2等组成的触发脉冲输出电路产生触发脉冲,使负载工作在全电压状态。而在平时,由于移相方波V6的宽度总是大于V3的宽度,所以只有V6的后沿起作用,这样保证负载在接近全电压工作时不会发生突然停止的现象。 该电路的控制端由于引入了负反馈信

2009-6-13

下面的一对振荡器电路可以分别产生一个32.768kHz方波,它们都使用32.768kHz的时钟晶体。该输出可以被馈送到15级二进制计数器,得到1秒的方波。 在左侧使用4069反相器的电路,建议增加一级晶体管电路,产生一个更好的波形。 单个晶体管电路产生更多的是斜坡波形,但输出摆幅在整个电源电压范围,很容易驱动CMOS二进制计数器。

2014-3-13

这里介绍的逆变器(见图1)主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。下面介绍该变压器的工作原理及制作过程。 工作原理 这里我们将详细介绍这个逆变器的工作原理。 一、方波的产生 这里采用CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的震荡频率不稳。电路的震荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC。图示电路的最大频率为:fmax

2008-10-21

下面的LED闪光电路在一个单一的1.5伏电池上工作。右上角的电路采用时下流行的LM3909 LED闪光IC,只需要一个定时电容和LED。 左上方的电路中,通过使用100uF的电容加倍电池电压,以获得3伏的LED驱动电压。74HC04六反相器的其中两部分用作方波振荡器,它建立LED的闪光频率,而第三部分是作为充电的电容器串联一个470欧姆的电阻,而缓冲器的输出是在1.5伏的缓冲区。当缓冲器的输出切换为接地(零伏)充电的电容器被放置在与LED串联,并供给足够的电压来点亮LED。LED电流大约是3毫

2014-3-15

这个简单的DC-DC转换器可以从一个12V电源输出最高至24V电压,最大功耗约为800mA。它可以被用来从一个12V的车辆用的电源运行收音机、小灯、继电器、喇叭或其他24V配件。它可以被用于将一个12V的电池从另一个12V电池充电。 LM358双运算放大器IC的上半部分作为一个方波振荡器,下半部分作为反馈回路,使负载变化时也能提供稳定的24V电压。做一些简单的调整这个电路有许多用途。 配件 R1,R2,R3,R4,R8,R7100K 1/4W电阻 R5470欧姆1/2W电阻 R610K线性电位

2014-3-11

该电路是类似于用来实现渐变的闪烁或交替闪烁的功能。在这个版本中,灯通过改变占空比减弱亮度,所以高功率白炽灯可没有太多的功率损耗可以使用。开关波形是通过比较两种不同频率的线性斜坡产生。频率较高的斜坡波形(约75赫兹。)从LM324四运算放大器作为施密特触发振荡器的一个部分产生的。频率较低的斜坡控制所述衰减率,并从上部的两个运算放大器相似的电路产生。在两个斜坡波形引脚9和1的第4个运算放大器,产生一个占空比可变的方波来驱动输出晶体管。第二个晶体管用于反转波形,因为其他组灯亮,从而另一组灯将熄灭。该2

2014-3-13

这里是12伏/2安培灯调光器,通过控制无稳态定时器555振荡器的占空比,可用于调暗标准25瓦特汽车制动或备用灯泡。 当电位器是在最上面的位置时,电容将通过两个1K的电阻和二极管快速充电,产生一个短的时间间隔高电平脉冲和长间隔低电平输出,灯泡亮度变暗。当电位器处于最低位置时,电容器充电同时通过1K电阻和50K的电位器,并通过1K电阻放电,产生一个长时间间隔的高电平脉冲和短间隔的低电平输出,灯光亮度近全功率输出。在200赫兹的方波的占空比可以在从约5%变化至95%。 下面的两个电路示出了灯连接到正或

2014-3-13

常见的数字或模拟集成电路型号的阿拉伯数字,仅表示其编号,而555时基集成电路的3个5,却有具体的内涵,故各生产厂家无一例外地在型号中加以保留。这是因为在该集成电路基片上的基准电压电路是由三个误差极小的5K电阻组成,分压精度高。 555电路大量应用于电子控、电子检测、仪器仪表、家用电器、音响报警、电子玩具等诸多方面。可用作振荡器、脉冲发生器、延时发生器、定时器、方波发生器、单稳态触发振荡器、双稳态多谐振荡器、自由多谐振荡器、锯齿波产生器、脉宽调制器、脉位调制器等等。 555时基电路之所以得

2009-3-2

延时电路由555振荡器与555单稳态电路组成。由IC1和和R1、RP、R2、D1、D2、C1组成无稳态多谐振荡器,振荡频率f=1.44/(R1+R2+RP)C1。图示参数的振荡频率约600赫兹左右。 IC1的振荡方波通过D3、R3,加至IC2的6、7脚。IC2和R4、C5、R3、C3等组成单稳态延时电路。通电初期,由于C5接在触发端2脚与地之间,故3脚呈高电平,继电器K吸合,K1-1闭合,维持给IC1、IC2供电,K2-2闭合,负载得电工作。此时,与IC2的7脚相连的芯片内放电管截止,因而C3开

2008-9-4

这是用于从8欧姆扬声器产生1 kHz音调的基本555方波振荡器。 在左侧的电路,NPN中等功率晶体管放大来自振荡器的功率输出给扬声器,它比直接从555(限制200MA)提供了更多的电流。一个小电容是用在晶体管的基极,以减缓开关次数,减少由扬声器所产生的感应电压。频率为约1.44 /(R1 + 2 * R2)C,其中R 1(1K)比R2(6.2K)小得多,以产生一个接近矩形波。更低的频率可通过增加6.2K值来获得,更高的频率可能会需要一个较小的电容,R1不能减小到低于1K。更低的音量可以通过与扬声

2014-3-15

使用该逆变器电路可将12V直流转换成220V、500W交流电。在这个电路CD4047是用于生成50Hz的方波和放大电流,然后通过功率三极管放大驱动变压器输出交流电压。 12V到220V逆变器电路图 如何计算变压器的额定值 其基本公式为:功率P = 电压V电流I 例如,如果我们想输出一个220W功率的220V电压,那么我们就需要1A的输出电流。然后在输入端,电压为12V时至少需要18.3A的电流,因为:12V * 18.3A 220W。变压器效率损耗这里不考虑。

2013-12-14

偶尔一个电路设计需要双电源供电,但唯一可用的电源是一个单电源,通常是正电源的电路。许多优秀的双电源IC解决方案也有,但许多项目合适的解决方案可以从闲置器件中获得。下面的简单电路会产生约9伏和-4伏双电源,由单5伏的电源供电,有足够的电流来驱动一个简单的运算放大器电路。正电压供给3.5毫安电流(1k负载)时,下降到约7伏;负电压供给7毫安电流时下降到约3.5伏。 电路采用了CD4049六反相器。在左边的两个反相器产生方波,其他四个反相器并联产生输出。输出低电平时,顶部电容器充电到大约4.5伏。输

2013-12-8

本装置电路简单,易于调试,性能可靠,逆变和充电自动转换,带电瓶电量指示。由于使用了大功率VMOS管,故效率高而成本又较低,适合电子爱好者组装。 工作原理 电路工作原理见图1。VT1和VT2构成多谐振荡器,振荡频率为5Hz。当电压下降时,为使频率不变,振荡器由稳压管VD1稳压后供电。多谐振荡器输出输出的方波电压,直接推动VMOS大功率管,经变压器升压后的220V交流电从插座CZ引出。 继电器J1用于逆变和充电的自动转换。当电网送电时,J1通电,则J1-3接通电网电源,J1-2从变压器

2008-10-21

第一款:CD4046与TWH8751组成D类放大电路 工作原理: MIC拾取的音频信号经IC1运放CA3160放大后,由IC2锁相环电路9脚输入,经内部压控振荡器VCO转换成变频方波,再通过内部相位比较器1比较放大后从2脚输出,通过VT1去推动IC3工作,然后由IC3功率放大后推动扬声器发音。IC2锁相环电路的9脚无信号输入时,2脚输出电平为0V,IC3停止工作。 元件选择: VT1选用9014,VD1选用1N4001,IC1运放选用CA3160,IC2锁相环电路选用CD404

2009-2-13

555定时器可以用来产生一个方波,以产生一个相对于电池负极端子的负电压。 当555定时器输出引脚3变为正电压约8伏,通过二极管(D1)给22 uF的电容充电。当输出切换到地面,22 uF电容通过第二个二极管(D2)在100 uF的电容两端产生相对于地面的负电压。负电压会达到约-7伏特,但由于5.1伏的齐纳二极管,其作为调节器限制到5.1伏特。不连接齐纳二极管,电路的电流大约为6毫安,连接则约18毫安。输出电流可用于大约为12毫安的负载。 一个额外的5.1伏的齐纳二极管和330欧姆的电阻可用于调节

2014-3-15

 ……

电子爱好者 DIANZIAIHAOZHE.COM